
LMR Master[™]S412E

Land Mobile Radio Modulation Analyzer, Signal Generator, Cable & Antenna Analyzer, Spectrum Analyzer

Overview

S412E LMR Master™

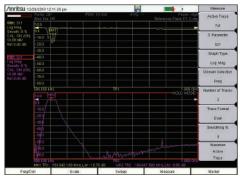
Introduction

The LMR Master S412E is a compact handheld multi-function analyzer that has been specifically developed for technicians and engineers who install and maintain public safety, utility and private mobile communications systems. LMR Master is a highly-integrated rugged handheld instrument that offers unmatched measurement breadth, depth, and precision while reducing the number of different instruments needed to verify operation and diagnose problems. LMR Master is the only truly portable solution for analysis and mapping of P25, TETRA, DMR, ITCR and ACSES Positive Train Control, and FirstNet Public Safety LTE.

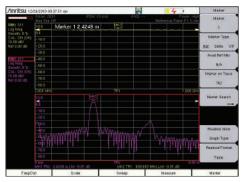
Standard features are:

- 2-Port Cable & Antenna and distance domain analysis: 500 kHz to 1.6 GHz (User may also select the more flexible Vector Network Analyzer display)
- Spectrum Analyzer: 9 kHz to 1.6 GHz
- CW/FM/AM Signal Generator: 500 kHz to 1.6 GHz
- Power Meter: 9 kHz to 1.6 GHz
- Narrowband FM Analysis: Received Power, Carrier Frequency, Frequency Error, Deviation, Modulation Rate, SINAD, THD, CTCSS, DCS, and DTMF.
- Auto Scan locks on to unidentified FM signal sources between 10 MHz and 1.6 GHz.
- Indoor Coverage Mapping of RSSI and transmitter SINAD is standard on the LMR Master.
- Outdoor Coverage Mapping is available with the optional GPS Receiver.

LMR Master S412E offers many options, including:


- Extension of Spectrum Analyzer to 6 GHz
- Extension of Vector Network Analyzer to 6 GHz
- Vector Voltmeter
- High Voltage Bias Tee (for both VNA and Spectrum Analyzer applications)
- High Accuracy Power Meter
- Spectrogram Interference Analyzer
- EMF Measurements
- GPS Receiver
- P25 FDMA and Phase 2 TDMA Analyzer & Signal Generator
- NXDN Analyzer & Signal Generator
- ETSI DMR / MotoTRBO* Analyzer & Signal Generator
- dPMR Analyzer
- ITCR & ACSES Positive Train Control Analyzer & Signal Generator
- TETRA Analyzer w/ analysis of Base Station ECC & Signal Generator
- Indoor and Outdoor Coverage Mapping of RSSI, BER, and EVM (Modulation Fidelity) for NBFM, P25 (Phase 1 & Phase 2), NXDN, DMR, MotoTRBO, ITCR and ACSES PTC, and TETRA
- LTE Analyzer (FirstNet) including RF, Modulation Quality, and Over-the-Air Measurements
- GSM Measurements for GSM-R railway systems

LMR site technicians and engineers can use the LMR Master to accurately and quickly test and verify the installation and commissioning of base stations, mobiles, and portables. The LMR Master is equally suited for preventative maintenance and troubleshooting to help ensure the operation of wireless network infrastructures, including broadband and microwave backhaul systems.


^{*} Supports those features compliant with the ETSI DMR standard.

2 Port Vector Network Analyzer

Cable & Antenna and VNA Mode in the LMR Master both provide simultaneous measurement of insertion loss and return loss.

Distance Domain (DTF) analysis allows simultaneous viewing of cable return loss and distance to fault.

2 Port Cable & Antenna, Vector Network Analyzer, including Distance to Fault

LMR Master features a 2 Port Cable & Antenna analyzer (which can be reconfigured via menu selection to a full Vector Network Analyzer display) to test and verify the performance of feedline, filtering, and antenna components. This includes:

- Connectors
- Cables/Jumpers
- Antenna Isolators
- Multicouplers/Diplexers/Duplexers
- Tower Mounted Amplifiers

Transmission measurements can help identify poor filter adjustment, antenna isolation, and degraded tower mounted amplifiers. Distance To Fault shows the location of impairments, without the null/masking effects found in traditional TDRs. The goal of these measurements is to maximize the system coverage and capacity with problem-free base stations.

Antenna System Failure Mechanisms

Maintenance is an on going requirement as antenna system performance can degrade at any point in time due to:

- · Loose connectors
- Improperly weatherized connectors
- · Pinched cables
- Poor grounding
- · Corroded connectors
- Lightning strikes
- Strong winds misaligning antennas
- Water intrusion into cables
- Bullet holes, nails, or rodent damage to coax and feedlines

Making Measurements Easier

The LMR Master provides features for making measurements easier to perform and for analyzing test results such as:

- Fast sweep speed, measurement point selection, and flexible display formats make it easy to view and adjust base station RF system performance
- High RF Immunity mode for testing in harsh RF environments
- Trace Overlay compares reference traces to see changes over time
- Limit Lines and Alarming for providing reference standards
- High and Low Power output selection to test tower-top components without climbing the tower
- Internal Bias-Tee on VNA ports to power up TMAs for off-line testing
- Internal Bias-Tee on Spectrum Analyzer port for easy powering of pre-amplifiers
- GPS tagging of data to verify location of tests

Measurements

1-port Measurements

- VSWR, Return Loss, Phase, Linear Polar, Log Polar
- Smith Chart
- Log/Mag/2 (1-port Cable Loss)
- Distance-to-Fault (DTF) Return Loss
- Distance-to-Fault (DTF) VSWR

Windowing Functions in Distance Domain

- Rectangular
- Normal Side Lobe
- Low Side Lobe
- Minimum Side Lobe

2-port Measurements

• Log Mag Insertion Loss/Gain, Phase, Linear Polar, Log Polar, Group Delay

Calibration

- User-variable Data Points from 2 to 4001
- Full S₁₁ (Open, Short, Load)
- 1P2P (Open, Short, Load, Through)
- Response S₁₁
- Response S₂₁

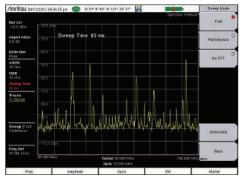
Sweep Functions

- Run/Hold, Single/Continuous
- RF Immunity (High/Low)
- Averaging/Smoothing
- Output Power (High/Low)

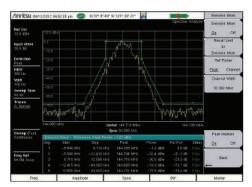
Trace Functions

- Save/Recall, Copy to Display Memory
- No Trace Math, Trace ± Memory
- Trace Overlay

Marker Functions


- Up to 8 Markers, each with a Delta Marker
- Marker to Peak/Valley
- Marker to/Peak Valley between Markers
- Marker Table

Limit Line Functions


- Limit Lines
 - Single Limit
 - Multi-segment (41)
 - Limit Alarm
- Limit Line Edit
 - Frequency, Amplitude
 - Add/Delete Point
 - Next Point Left/Right
 - Move Limit

Spectrum Analyzer

The spectrum analyzer mode in the LMR Master offers fast sweep speeds for interference hunting intermittent signals.

The Spectrum Analyzer mode in the LMR Master offers automated measurements including occupied bandwidth, adjacent channel power, and emission mask, as shown above. The mask can be quickly created using the standard limit line editor. The emission mask measurement function automatically moves the trace to match the peak of a modulated signal to conform to common mask standards.

Spectrum Analyzer

LMR Master features the most powerful handheld spectrum analyzer in its class with unmatched performance in:

- · Sensitivity & Dynamic Range
- Phase Noise & TOI
- DSP-based IF Filtering
- · Frequency Accuracy
- · Resolution Bandwidth (RBW)

The goal of Spectrum Analyzer measurements is to be able to accurately monitor, measure, and analyze RF signals and their environments. It finds rouge signals, measures carriers and distortion, and verifies base stations' signal performance. It validates carrier frequency and identifies desired and undesired signals.

Simple But Powerful

The LMR Master features dedicated routines for one-button measurements. For more in-depth analysis, the technician has control over settings and features that are not found even on lab-grade benchtop spectrum analyzers. For example, the LMR Master offers:

- Multiple sweep detection methods

 Peak, Negative, True RMS,
 Quasi-Peak, Sample
- Advanced marker functions noise marker, tracking marker, peak search, sequential peak search, delta markers
- Advanced marker functions noise marker, tracking marker, peak search, sequential peak search, delta markers
- Advanced limit line functions automatic envelope creation, relative limits, limit mirror, point/ segment/line adjustment
- Save-on-Event automatically saves a sweep when crossing a limit line

The LMR Master offers full control over bandwidth and sweep settings, or can be set to automatically optimize for best possible trade-off between accuracy and speed.

GPS-Assisted Frequency Accuracy

With GPS Option 31 the frequency accuracy is improved to < 50 ppb (parts per billion). Also all measurements can be GPS tagged for exporting to maps.

Rx Noise Floor Testing

The LMR Master can measure the receive noise floor on a base station's uplink channel using the channel power measurement. An elevated noise floor indicates interference that can lead to call blocking, denial of service, call drops, low data rates, and lowered system capacity.

Measurements

- One Button Measurements
 - Field Strength in dBm/m2 or dBmV/m
 - Occupied Bandwidth 1% to 99% of power
- Emission Mask
 - · Channel Power in specified bandwidth
 - ACPR adjacent channel power ratio
 - AM/FM/SSB Demodulation audio out only
 - C/I carrier-to-interference ratio

Sweep Functions

- Sweep
 - Single/Continuous, Manual Trigger, Reset, Minimum Sweep Time
- Detection
 - Peak, RMS, Negative, Sample, Quasi-peak
- Triggers
 - Free Run, External, Video, Change Position, Manual

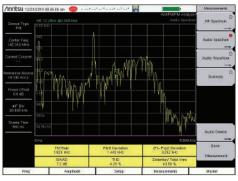
Trace Functions

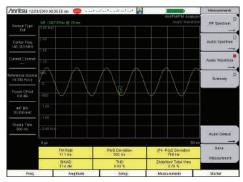
- Traces
 - 1-3 Traces (A, B, C), View/Blank, Write/Hold
- Trace A Operations
 - Normal, Max Hold, Min Hold, Average, Number of Averages, (always the live trace)
- Trace B Operations
 - A → B, B←→C, Max Hold, Min Hold
- Trace C Operations
 - A → C, B←→C, Max Hold, Min Hold,
 A B → C.
 - B A \rightarrow C, Relative Reference (dB), Scale

Marker Functions

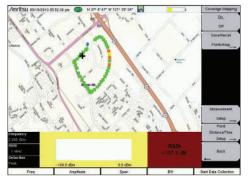
- Markers
 - 1-6 Markers each with a Delta Marker, or Marker 1 Reference with 6 Delta Markers
- Marker Types
 - Fixed, Tracking, Noise, Frequency Counter
- Marker Auto-Position
 - Peak Search, Next Peak (Right/Left),
 Peak Threshold %, To Channel, To
 Center,To Reference Level, Delta Marker to Span
- Marker Table
 - 1-6 markers' frequency & amplitude plus delta markers' frequency offset & amplitude

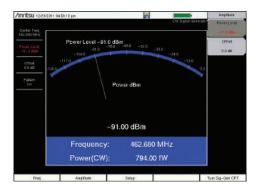
Limit Line Functions


- Limit Lines
 - Upper/Lower, Limit Alarm, Default Limit
- Limit Line Edit
 - Frequency, Amplitude, Add/Delete Point, Add Vertical, Next Point Left/Right
- Limit Line Move
 - To Current Center Frequency, By dB or Hz, To Marker 1, Offset from Marker 1
- Limit Line Envelope
 - Create, Update Amplitude, Number of Points (41), Offset, Shape Square/Slope
- Limit Line Advanced
 - Absolute/Relative, Mirror, Save/Recall


AM/FM/PM Analyzer (Option 509)

Signal Generator




The AM/FM/PM option 509 displays the demodulated audio spectrum vs. frequency with AM (%), Deviation (kHz) or Deviation (rad) for AM/FM/PM, respectively.

The AM/FM/PM option 509 displays the demodulated audio spectrum vs. time with AM (%), Deviation (kHz), or Deviation (rad) for AM/FM/PM, respectively.

The Coverage Mapping Option 0431 provides measurement RSSI or ACPR of a single channel along with a user downloaded map and GPS location.

The LMR Master includes a standard Signal Generator with coverage from 500 kHz to 1.6 GHz and 120 dB power control range.

AM/FM/PM Modulation Measurements

Option 509 AM/FM/PM Modulation Analyzer provides analysis and graphical display of common analog modulations. The RF Spectrum View displays the RF spectrum with carrier power (power in dB vs. frequency) along with center frequency, and occupied BW. Audio Spectrum shows the demodulated audio spectrum along with the audio rate, RMS deviation, Pk-Pk deviation (FM/PM) or depth (AM), SINAD, Total Harmonic Distortion (THD), and Total Distortion. Each demodulation also includes an Audio Waveform display that shows the time-domain demodulated waveform. A summary table shows a tabular list of all the RF and Demod measurement results.

AM/FM/PM Coverage Measurements

Coverage Mapping Option 431 provides on screen map displays of RSSI and ACPR.

Users can convert existing map images to a format compatible with the LMR Master using Anritsu's easyMap Tools™ PC software. RSSI and ACPR measurements can then be superimposed on the maps with the LMR Master. Maps with GPS coordinates can take advantage of the optional GPS receiver to place measurements appropriately. For indoor measurements, without GPS, the user just touches the LMR Master display to place measurements at the proper location. The maps with measurements can be exported through the built-in USB port as JPEG or KML files.

Measurements

- One Button Measurements
 - Field Strength in dBm/m² or dBmV/m
 - Occupied Bandwidth 1% to 99% of power
 - Channel Power in specified bandwidth
 - ACPR adjacent channel power ratio
 - AM/FM/SSB Demodulation audio out only
 - C/I carrier-to-interference ratio

Sweep Functions

- Swee
 - Single/Continuous, Manual Trigger, Reset, Minimum Sweep Time
- Detection
 - Peak, RMS, Negative, Sample, Quasi-peak

Triggers

 Free Run, External, Video, Change Position, Manual

Signal Generator

The LMR Master includes a Signal Generator mode for use as a general purpose test signal. The generator can produce CW, modulated AM, and modulated FM signals. Frequency can be adjusted from 500 kHz to 1.6 GHz in 1 Hz steps. Power can be adjusted from 1 to -120 dBm in 0.1 dB steps. The frequency accuracy follows the spectrum analyzer mode and is improved to less than 50 ppb when the GPS is on and locked.

Setup Parameters

- Generator
 - On/Off
- Tx Output Level
 - −130 dBm to 0 dBm
- Tx Pattern

CW RF Characteristics

- Power Level Accuracy
 - 2.0 dB (CW Pattern, temperature range 15 °C to 35 °C, -130 dBm to 0 dBm) Typical
- Frequency Range
 - 500 kHz to 1.6 GHz
- Frequency Accuracy
 - Same as Spectrum Analyzer
- Modulation Adjustments
 - AM depth
 - FM deviation

Power Meter

High Accuracy Power Meter (Option 19)

Power Meter Built-in

Power is displayed in an analog type display and, supports both Watts and dBm. RMS averaging can be set to low, medium, or high.

High Accuracy Power Meter

Requires external power sensor with convenient connection via a USB A/mini-B cable. Use upper/lower limit activation during pass/fail measurements.

USB Power Sensor

Anritsu offers a family of Power Sensors for your power measurement requirements. They are compact enough to fit in your shirt pocket.

PC Power Meter

These power sensors can be used with a PC running Microsoft Windows® via USB. A front panel display makes the PC appear like a traditional power meter.

Power Meters

The LMR Master offers a standard built-in Power Meter utilizing the RF In port, and an optional High Accuracy Power Meter when used with optional external power sensors.

Properly setting the transmitter output power of a base station is critical to the overall operation of a wireless network. A 1.5 dB change in power levels indicates a 15% change in coverage area. Too much power means overlapping coverage that translates into cell-to-cell self interference. Too little power, or too little coverage, creates island cells with non-overlapping cell sites and reduced in-building coverage. High or low values will cause dead zones/dropped calls, lower data rates/reduced capacity near cell edges, and cell loading imbalances/blocked calls.

High Accuracy Power Meter (Option 19)

To address the most accurate power measurement requirements, select the high accuracy measurement option and a choice of sensors with:

- Frequency ranges: 10 MHz to 26 GHz¹
- Power ranges: -40 dBm to +51.76 dBm¹
- Measurement uncertainties: ± 0.18 dB²
 ¹Depending on choice of sensor
 ² Under specific conditions

These sensors enable users to make accurate measurements for CW and digitally modulated signals for LMR and cellular wireless networks.

The power sensor easily connects to the LMR Master via a USB A/Mini-B cable. An additional benefit of using the USB connection is that a separate DC supply (or battery) is not needed because the necessary power is supplied by the LMR Master's USB host port.

PC Power Meter

These power sensors can be used stand-alone with a PC running Microsoft Windows® via USB. They come with the PowerXpert™ application, an advanced data analysis and control software. The application has abundant features, such as data logging, power vs. time graph, large numerical display, and many more features, that enable quick and accurate measurements.

Remote Power Monitoring via LAN

A USB-to-LAN hub converter enables remote power monitoring via the Internet, if desired.

Power Sensors

MA24105A

- Inline Peak Power Sensor
 - 350 MHz to 4 GHz, +51.76 dBm

MA24106A

- High Accuracy RF Power Sensor
- 50 MHz to 6 GHz, +23 dBm

MA24108A

- Microwave USB Power Sensor
 - 10 MHz to 8 GHz, +20 dBm

MA24118A

- Microwave USB Power Sensor
 - 10 MHz to 18 GHz, +20 dBm

MA24126A

- Microwave USB Power Sensor
 - 10 MHz to 26 GHz, +20 dBm

MA24208A

- Microwave Universal USB Power Sensor
 - 10 MHz to 8 GHz, +20 dBm to -60 dBm

MA24218A

- Microwave Universal USB Power Sensor
 - 10 MHz to 18 GHz, +20 dBm to -60 dBm

MA24330A

- Microwave CW USB Power Sensor
 - 10 MHz to 33 GHz, +20 dBm

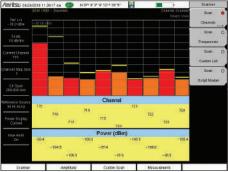
MA24340A

- Microwave CW USB Power Sensor
- 10 MHz to 40 GHz, +20 dBm

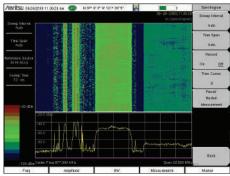
MA24350A

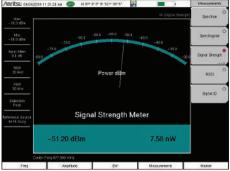
- Microwave CW USB Power Sensor
 - 10 MHz to 50 GHz, +20 dBm

MA25100A


• RF Power Indicator

Interference Analyzer (Option 25)


Channel Scanner (Option 27)


Channel Scanner

Works on any signal and is useful when looking for IM or harmonics. Can help spot signals widely separated in frequency that turn on and off together.

Spectrogram

For identifying intermittent interference and tracking signal levels over time for up to 72 hours with an external USB flash drive.

Signal Strength Meter

Can locate an interfering signal, by using a directional antenna and measuring the signal strength and by an audible beep proportional to its strength.

Interference Mapping

Maps can be downloaded to the LMR Master to help identify sources of interfering signals. Maps can be panned and zoomed to further aid the hunt for interference.

Interference Analyzer (Option 25) Channel Scanner (Option 27)

Interference is a continuously growing problem for wireless network operators. Compounding the problem are the many sources that can generate interference such as:

- Intentional Radiators
- Unintentional Radiators
- Self Interference

Interference causes channel degradation, robbing the network of capacity. In many instances, interference can cause an outage to a sector, a cell, and/or neighboring cells. The goal of these measurements is to resolve interference issues as quickly as possible.

LMR Master supports the MA2700A Interference Hunter Handheld Direction Finding System (sold separately).

Monitoring Interference

The LMR Master offers many tools for monitoring intermittent interferers over time to determine patterns:

- Spectrogram
- Received Signal Strength Indicator
- · Remote Monitoring over the Internet
- Save-on-Event crossing a limit line

Master Software Tools for your PC features diagnostic tools for efficient analysis of the data collected during interference monitoring. These features include:

- Folder Spectrogram creates a composite file of multiple traces for quick review
- Movie playback playback data in the familiar frequency domain view
- Histogram filter data and search for number of occurrences and time of day
- 3D Spectrogram for in-depth analysis with 3-axis rotation viewing control

Identifying Interference

The LMR Master provides several tools to identify the interference – either from a neighboring wireless operator, illegal repeater or jammer, or self-interference:

- Signal ID (up to 12 signals at once)
- Signal Analyzer Over-the-Air Scanners
- Channel Scanner (up to 1200 channels, 20 at a time)

Interference Mapping

Once interference has been identified, its location can be mapped with the help of the MA2700A Interference Hunter™ (see separate technical data sheet) and suitable directional antenna. Maps can be created with Anritsu's easyMap Tools™ software and downloaded to the LMR Master.

Interference Analyzer Measurements

- Spectrogram
- Signal Strength Meter
- Received Signal Strength Indicator (RSSI)
- Signal ID (up to 12 signals)
 - FM
 - GSM/GPRS/EDGE
 - W-CDMA/HSDPA
 - CDMA/EV-DO
 - Wi-Fi
- Spectrum
 - Field Strength in dBm/m2 or dBmV/m
 - Occupied Bandwidth 1% to 99% of power
 - Channel Power in specified bandwidth
 - ACPR adjacent channel power ratioAM/FM/SSB audio monitor
 - C/I carrier-to-interference ratio

Channel Scanner

- Scan
 - 20 channels at once, by frequency or channel
 - · Noncontiguous channels
 - Different channel bandwidths in one scan
- Display
 - · Current plus Max hold display
 - Graph View
 - Table View
- Script Master™
 - Up to 1200 Channels
 - Auto-repeat sets of 20 channels and total
 - Auto-save with GPS tagging

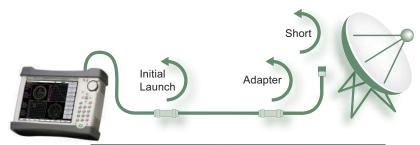
Distance Domain Analysis

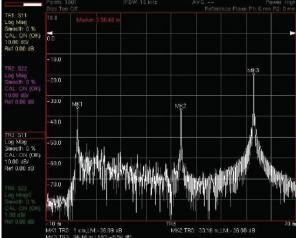
Distance Domain

Distance-to-Fault Analysis is a powerful field test tool to analyze cables for faults, including minor discontinuities that may occur due to a loose connection, corrosion, or other aging effects. By using Frequency Domain Reflectometry (FDR), the LMR Master sweeps a user-specified band of full power operational frequencies (instead of fast narrow pulses from TDR-type approaches) to more precisely identify discontinuities.

The LMR Master converts S-parameters from frequency domain into distance domain on the horizontal display axis, using a mathematical computation called Inverse

Fourier Transform. Connect a reflection at the opposite end of the cable and the discontinuities appear versus distance to reveal any potential maintenance issues.

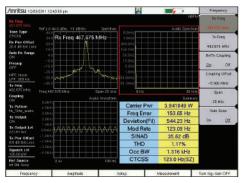

Distance Domain will improve your productivity with displays of the cable in terms of discontinuities versus distance. This readout can then be compared against previous measurements (from stored data) to determine whether any degradations have occurred since installation (or the last maintenance activity). More importantly, you will know precisely where to go to fix the problem and so minimize or prevent downtime of the system.


Measurements

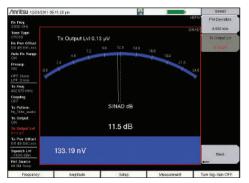
- DTF Return Loss
- DTF Insertion Loss
- Full DTF support in VNA modes

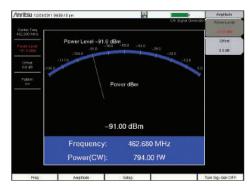
Setup Parameters

- Start Distance
- Stop Distance
- Start Frequency (FDR)
- Stop Frequency (FDR)
- Windowing: Rectangular, Nominal Side Lobe, Low Side Lobe, Minimum Side Lobe
- Propagation Velocity
- Cable Loss
- Units: meters or feet
- Distance Info display



Distance-to-Fault Analysis


This illustration shows a typical cable measurement scenario with an adapter between the near and far end of the cable. With a short on the far end, the LMR Master can convert frequency domain results into corresponding distance-domain readout. Moving left to right, we can see the initial launch (MK1), the intermediate adapter (MK2), and the short at the far end of the cable (MK3). It is easy to interpret the discontinuities as normal or faults by simply looking at the location and amplitude of the peaks. Since the short shows as -20 dB, this means that the one-way cable loss must be 10 dB.


NBFM Analyzer

When cabled to a radio, the NBFM Analyzer features an Auto Scan function that can automatically determine and tune to the carrier frequency of an unknown transmitter.

Dedicated 20 dB Quieting and SINAD tools provide quick and accurate measurement of analog receiver performance.

The NBFM Analyzer can generate a CW or FM carrier with adjustable deviation for modulation patterns including 1 kHz, CTCSS/DCS, and DTMF.

NBFM Analyzer

The NBFM Analyzer is a standard feature on all LMR Master instruments and is designed to analyze the performance of both receivers and transmitters according to guidelines in the TIA-603-D Measurement and Performance Standard.

Auto Scan can be used to identify (and automatically tune to) the center frequency of an unknown transmitter. Once locked to the center frequency, the Summary display shows Received Power, Frequency Error, Deviation, Modulation Rate, Occupied Bandwidth and THD. Standard values for CTCSS, DCS (both Normal and Inverted), and DTMF are decoded and displayed. 20 dB Quieting and SINAD test screens are provided for receiver alignment. Units are adjustable for dBm, Volts, or Watts as needed.

Filters (high-pass, low-pass, pre-emphasis and de-emphasis) allow selection of audio passband components for precise measurements.

The built-in signal generator can provide everything from pure clean CW to modulated FM with test tone and privacy tone at variable deviations.

NBFM Coverage Mapping is also standard on the S412E LMR Master. When GPS signals are available, the optional GPS receiver (Option 31) allows location tagging of RSSI. THD, and SINAD points which are displayed on the S412E's map viewer. Results are then exportable as tab-delimited data, JPEG image, and industry-standard KML for offline analysis in Google Earth™ or other mapping applications. The LMR Master offers the industry's only self-contained indoor mapping solution for land mobile radio — simply load a building floor plan and begin taking measurements by tapping locations right on the instrument's high-resolution touchscreen display.

RF Measurements

- Received Channel Power
- · Carrier Frequency
- Frequency Error
- Occupied Bandwidth (% of Power or > dBc method)

Modulation Measurements

- Deviation
- Modulation Rate
- SINAD from RF Input
- SINAD from Audio Input
- Quieting
- \bullet CTCSS / DCS / Inverted DCS / DTMF
- RSSI / THD / SINAD Coverage Mapping

Filter Types

- 750 μs Pre-Emphasis
- 750 µs De-Emphasis
- High Pass: 300 Hz, 3 kHz, None
- Low Pass: 300 Hz, 3 kHz, 15 kHz, None

Analyzer Adjustments

- Auto Scan (10 MHz 1.6 GHz)
- RX Frequency
- TX Frequency
- RX/TX Coupling
- RX/TX Duplex Offset
- Channel Span
- Audio Span
- Audio Sweep Time
- RX Units
- TX Units
- Numerical Squelch Level

Signal Generator Test Patterns

- CW
- FM + CTCSS
- FM + DCS
- FM + DTMF
- FM + 1 kHz + CTCSS
- FM + 1 kHz + DCS
- AM 10 Hz to 10 kHz, 1 to 100%

Introduction to Signal Analyzers

LMR Master testing from a service vehicle

Signal Analyzers

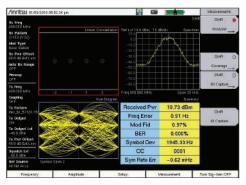
The LMR Master features Signal Analyzers for the major wireless standards around the world. The Signal Analyzers are designed to test and verify the:

- · RF Signal Strength and Quality
- · Modulation Quality
- Downlink (Talk-Out) Coverage
- Downlink Channel Capture
- Receiver Sensitivity (excluding WiMAX, and LTE)

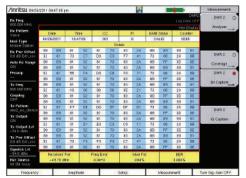
DSP SDR Receiver enables OTA Coverage Measurements

DSP-powered SDR technology in the LMR Master provides accurate and convenient measurement of the RF modulation quality for LMR systems and improved sensitivity for realistic coverage mapping measurements. DSP IF filtering ensures that adjacent channel signals will not cause errors in on-channel measurements. Optional internal GPS provides location information for coverage mapping, and improves the internal reference accuracy to less than 50 ppb.

Coverage mapping options are available to support in-service and out-of-service measurements of FM, P25, TETRA, NXDN, DMR, and PTC systems. LMR Master offers both outdoor (using GPS tagging) and indoor (using on-screen tagging) of critical performance metrics. The signal generator offers a 130 dB power control range to measure receiver sensitivity using CW, modulated FM, modulated AM, and digital LMR modulation test patterns. The signal generator's amplitude, frequency, deviation/depth, and test pattern (digital) are independently adjustable to allow stimulus of a repeater input while observing the transmitter output.


LMR Master's ultra-sensitive receiver combined with Signal Analyzer options support testing and mapping the downlink signals over the air, while powerful DSP filtering ensures that on-channel measurements are not skewed by noise or signals in adjacent channels.

Signal Analyzers


- Narrowband FM
- P25 FDMA Phase 1 and TDMA Phase 2
- NXDN™
- DMR / MotoTRBO™ / PDT
- ITCR and ACSES Positive Train Control (PTC)
- TETRA
- dPMR
- FirstNet Public Safety LTE
- WiMAX (IEEE 802.16, Fixed and Mobile)
- GSM

DMR Signal Analyzer (Option 591)

The DMR analyzer display gives a complete summary of the RF and Modulation Quality.

The DMR Bit Capture display displays the uplink traffic and exports this to USB memory.

DMR Analyzer

The DMR Analyzer, Option 591, is designed to test and verify the performance of DMR radio systems. The DMR Analyzer supports measurement of time-slotted DMR transmitted signals while directly connected to the transmitter (through a power attenuator) or over-the-air with an antenna. The signal analyzer input has the sensitivity to measure DMR signals down to -115 dBm allowing transmitter problems to be analyzed and verified miles away. Separate demodulators are available for Base Station (BS) and Mobile Station (MS) systems. Receive test patterns include the DMR standard 1031 Hz BER pattern, the O.153 PN9 BER pattern, a proprietary voice pattern that estimates BER from audio transmissions.

The built-in DMR signal generator offers over ten DMR test patterns including the standard 1031 Hz voice-framed BER pattern and the O.153 PN9 BER pattern. The generator power level can be controlled over a 130 dB range from 0 to –130 dBm to support receiver sensitivity measurements. The 0 dBm signal level supports amplification to higher levels with an external amplifier for use as a temporary BER test transmitter for coverage assessment. The frequency of the DMR signal generator can be either locked to or controlled independently from the DMR Analyzer frequency.

Bit Capture captures, displays, and stores the uplink data traffic.

A 12.5 kHz channel I-Q capture function is also available to record a channel's baseband data to USB memory as tab delimited data for later analysis and replay.

- RF Quality
- · Modulation Quality
- Downlink (Talk-Out) Coverage
- Baseband I-Q Channel Capture
- DMR Test Signal Generator for Receiver Sensitivity and Coverage Measurements

RF Measurements

- Received channel power
- Frequency error
- Channel Spectrum
- Eye Diagram
- Constellation
- Linear Constellation
- Power Profile

Modulation Measurements

- Modulation Types: Base Station (BS) and Mobile Station (MS)
- Modulation Fidelity
- Symbol Deviation
- Symbol Rate Error
- Symbol Histogram

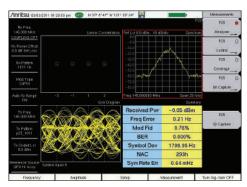
Protocol Measurements

- BER and EVM on 1031 Hz, O.153, Voice
- Color Code

DMR Analyzer Patterns

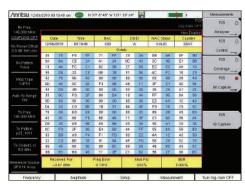
- 1031 Hz
- O.153 (V.52, PN9)
- Voice
- Silence

Base Station Test Patterns


- dmr_bs_1031
- dmr_bs_511(0.153)
- dmr_bs_silence
- dmr_bs_1031_1_pcnt_ber
- dmr_bs_511(O.153)_1_pcnt_ber
- dmr_bs_tscc
- cw
- am 1khz audio
- fm_1khz_audio

Mobile Station Test Patterns

- dmr_ms_1031
- dmr_ms_511(0.153)
- dmr ms silence
- dmr_ms_1031_1_pcnt_ber
- dmr_ms_511(0.153)_1_pcnt_ber
- cw
- am_1khz_audio
- fm_1khz_audio


P25 FDMA and P25 Phase 2 TDMA Signal Analyzer (Option 521)

The P25 analyzer display gives a complete summary of the RF Quality.

The P25 Control channel display provides a hex display of the Trunked Downlink data in hex format. Anritsu offers a free software script to convert the hex information to text messages.

The P25 Bit Capture display displays the uplink traffic and exports this to USB memory.

P25 Analyzer

The P25 Signal Analyzer, Option 521, is designed to test and verify the performance of P25 conventional and trunked radio systems. The P25 Analyzer supports measurement of P25 transmitted signals while directly connected to the transmitter (through a power attenuator) or over-the-air with an antenna. The signal analyzer input has the sensitivity to measure P25 signals down to -115 dBm allowing transmitter problems to be analyzed and verified miles away. Separate demodulators are available for C4FM (Phase 1 P25 systems) and $\pi()/4$ DQPSK (LSM and Phase 2 P25 systems). Receive test patterns include the P25 standard 1011 Hz BER pattern, the 0.153 PN9 BER pattern, a proprietary voice pattern that estimates BER from audio transmissions, and a control channel pattern that measures the control channel message error rate and estimates the control channel BER based on the forward error correction bits.

The P25 signal generator offers several P25 test patterns including the standard 1011 Hz (Phase 1), 1031 Hz (Phase 2), voice-framed BER pattern, and the O.153 PN9 BER pattern. The generator power level can be controlled over a 130 dB range from 0 to –130 dBm to support receiver sensitivity measurements. The 0 dBm signal level supports amplification to higher levels with an external amplifier for use as a temporary BER test transmitter for inbound coverage assessment. The frequency of the signal generator can be either locked to or controlled independently from the receiver frequency.

Control Channel messages on trunked P25 systems can be captured to the instrument display and exported to USB memory for conversion to standard test messages using a Python script available from the Anritsu website at no charge. Control Channel data can be captured in either free-run mode or triggered based on user-definable hexadecimal values to catch specific messages as they occur. Bit Capture captures, displays, and stores the uplink data traffic.

A 12.5 kHz channel I-Q capture function is also available to record a channel's baseband data to USB memory as tabdelimited data for later analysis and replay.

- RF Quality
- Modulation Quality
- Downlink (Talk-Out) Coverage
- · Baseband I-Q Channel Capture
- Trunked System Control Channel Messages
- P25 Test Signal Generator for Receiver Sensitivity and Coverage Measurements

RF Measurements

- · Received channel power
- · Frequency error
- Channel Spectrum
- Eye Diagram
- Constellation

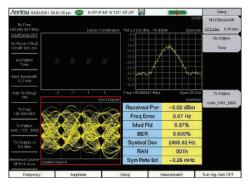
Modulation Measurements

- Modulation Types (P25 Phase 2):
 Base Station (BS) and Mobile Station (MS)
- Modulation Fidelity
- Symbol Deviation
- Symbol Rate Error
- Symbol Histogram

Protocol Measurements

- BER and ModFid on 1011 Hz, 1031 Hz O.153, Voice, or Control Channel
- NAC
- Color Code (P25 Phase 2)
- TDMA Power Profile (P25 Phase 2)

P25 Analyzer Patterns


- 1011 Hz (P25 Phase 1)
- 1031 Hz (P25 Phase 2)
- O.153 (V.52, PN9)
- Voice
- Control Channel

P25 Generator Test Patterns


- p25_1011
- p25_511 (0.153/v.52)
- p25_1011_cal
- p25_intfr
- p25_silence
- p25_busy
- p25_idle
- p25_high_dev
- p25_low_dev
- p25_fidelity
- p25_lsm_1011
- p25_lsm_511 (0.153/v.52)
- p25_lsm_1011_cal
- p25_lsm_intfr
- p25_lsm_silence
- p25_lsm_busy
- p25_lsm_idle
- p25_lsm_fidelity
- p252_bs_1031
- p252_bs_1031_cal
- p252_bs_silence
- p252_ms_1031_0
- p252_ms_1031_1
- p252_ms_1031_2
- p252_ms_1031_cal_0
- p252_ms_1031_cal_1
- p252_ms_silence_0
- p252_ms_silence_1
- CW
- am_1khz_audio
- fm_1khz_audio

NXDN Signal Analyzer (Option 531)

The NXDN analyzer display gives a complete summary of the RF Quality.

The NXDN Control channel display provides a hex display of the Trunked Downlink data in hex format. Anritsu offers a free software script to convert the hex information to text messages.

The NXDN Bit Capture display displays the uplink traffic and exports this to USB memory.

NXDN Analyzer

The NXDN Analyzer, Option 531, is designed to test and verify the performance of NXDN conventional and trunked radio systems. The NXDN Analyzer supports measurement of NXDN transmitted signals with a direct connection to the transmitter (through a power attenuator) or over-the-air with an antenna. The signal analyzer input has the sensitivity to measure NXDN signals down to -115 dBm, allowing transmitter problems to be analyzed and verified miles away. Separate demodulators are available for 12.5 kHz and 6.25 kHz NXDN systems. Receive BER test patterns include the NXDN standard 1031 "Tone" BER pattern and the O.153 (PN9) BER pattern. For in-service BER testing, Option 0531 offers a proprietary voice pattern that estimates BER from forward error correction bits, and a control channel BER pattern that measures the control channel message error rate, and estimates the control channel BER from the forward error correction bits.

The built-in NXDN signal generator offers over seven NXDN test patterns at both 9600 (12.5 kHz) and 4800 (6.25 kHz) rates including the standard 1031 "Tone" BER pattern and the 511 (0.153) BER pattern.

The generator power level can be controlled over a 130 dB range from 0 to −130 dBm to support receiver sensitivity measurements. The 0 dBm signal level supports amplification to higher levels with an external amplifier for use as a temporary BER test transmitter for coverage assessment. The frequency of the NXDN signal generator is independently settable from the NXDN Analyzer frequency.

Control channel messages on trunked NXDN systems can be captured as hex data to the internal display and exported to USB memory for converting to standard test messages using a Python script available from Anritsu at no charge. Bit Capture captures, displays, and stores the uplink data traffic.

A 12.5 kHz channel I-Q capture is also available to capture channel baseband data to USB memory as tab delimited data for later analysis and replay.

- RF Quality
- Modulation Quality
- Downlink (Talk-Out) Coverage
- Baseband I-Q Channel Capture
- Trunked System Control Channel Messages
- NXDN Test Signal Generator for Receiver Sensitivity Measurements

RF Measurements

- · Received channel power
- · Frequency error
- Channel Spectrum
- Eye Diagram
- Constellation

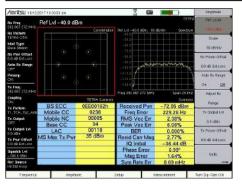
Modulation Measurements

- Modulation Fidelity
- Symbol Deviation
- Symbol Rate Error
- Symbol Histogram

Protocol Measurements

- BER on 1031 Hz, O.153, Voice, or Control Channel
- RAN

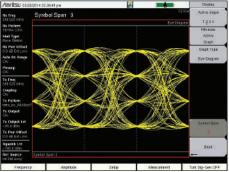
NXDN Analyzer Patterns


- 1031 Hz
- 0.153 (V.52, PN9)
- Voice
- Control Channel
- Traffic (DTS)

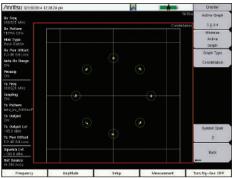
NXDN Generator Test Patterns

- nxdn 1031 4800
- nxdn_1031_9600
- nxdn_511(O.153)_4800
- nxdn_511(0.153)_9600
- nxdn_high_dev_4800
- nxdn_high_dev_9600
- nxdn_low_dev_4800nxdn_low_dev_9600
- nxdn_udch_pat_10_4800
- nxdn_udch_pat_10_9600
- nxdn_cac_4800
- nxdn_cac_9600
- nxdn_1031_dts_4800
- nxdn 1031 dts 9600
- nxdn facch3 dts 4800
- nxdn_facch3_dts_9600
- nxdn_pn9_framed_4800
- nxdn_pn9_framed_9600nxdn 1031 cal 4800
- nxdn_1031_cal_4600
- CW
- am_1khz_audio
- fm_1khz_audio

TETRA Analyzer (Option 581)


Configurable Quad Display

User-configurable display offers the ability to change screens as needed to suit measurement needs.


TETRA Summary Screen

Provides information on cell configurations and maximum power directives to mobile stations.

Eye Diagram

Distortions in the Eye Diagram will visually indicate variations in amplitude, phase, and inter-symbol timing. Summary screen allow numerical interpretations of error.

Constellation

Distortions in the constellation reveal issues possibly caused by transmitter degradation, multipath, or interference.

TETRA Analyzer

The TETRA Analyzer, Option 581, is designed to test and verify on-the-air performance of Terrestrial Trunked Radio systems. TETRA Analyzer looks at both the physical layer and cell information to give comprehensive insight into real world system performance. Leveraging the LMR Master's high sensitivity receiver, TETRA Analyzer is capable of analyzing system performance at any location. Site technicians or RF engineers can make measurements Overthe-Air (OTA) to spot-check a transmitter's coverage and signal quality without taking the cell site off-line. When the OTA test results are ambiguous one can directly connect to the base station to check the signal quality and transmitter power.

RMS and Peak Vector Error

Vector Error is a measurement of the difference between the ideal constellation point and the point measured by the the receiver. Vector Error faults will result in poor signal quality to all user equipment. High Vector Error may indicate multipath caused by destructive combining of reflected signals.

Bit Error Rate (BER)

A proprietary method has been developed to estimate Bit Error Rate (BER) from the TETRA base station's live data stream. This measurement will work on live base stations without the need to transmit a test pattern.

IQ Imbalance and Magnitude/Phase Errors

IQ Imbalance shows the ratio difference between the phase states. Magnitude and Phase Errors indicate the cause of IQ errors.

TETRA Summary

Derived from the Base Station control channel, the TETRA Summary screen provides information on the Mobile and Base Color Codes, Network Code, and Location Area Code. It also shows the Mobile Station Maximum Transit Power directive as issued by the base station. Examining these values can help diagnose the causes of user-reported performance issues, and helps ensure that new systems are ready for mission-critical use before wide deployment to users.

TETRA Base Station Receiver Sensitivity Measurement

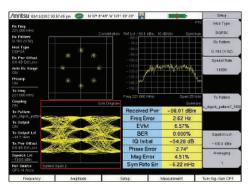
The LMR Master is the first handheld instrument capable of making TETRA Base Station Receiver Sensitivity measurements. This measurement requires the measuring instrument to generate a T1 TCH/7.2 signal that is synchronized to the TETRA Base Station's timing. The LMR Master supports all major TETRA Base Station manufacturers and can synchronize the timing using the base station's downlink signal or by using an external trigger from the base station.

RF Measurements

- Received Power
- Frequency Error
- Channel Spectrum
- Constellation
- Eye Diagram

Modulation Measurements

- RMS & Peak Vector Error
- Bit Error Rate (BER)
- Residual Carrier Magnitude
- IQ Imbalance
- Magnitude & Phase Error
- Symbol Rate Error


Protocol Measurements

- Base Station Extended Color Code
- Mobile Country Code
- Mobile Network Code
- Base Color Code
- Location Area Code
- Mobile Station Maximum Transmit Power

Base Station Test Patterns

- tetra_bs_idle_unallocPCH
- tetra_bs_busy_allocPCH
- T1_TCH_7p2

PTC ITCR Analyzer (Option 721)

PTC ITCR Main Screen DQPSK

PTC ITCR Signal Analyzer

The PTC ITCR Analyzer, Option 721, is designed to test and verify the performance of Positive Train Control radio systems compliant with the ITC-R standard for FRA Class 1 railways. The PTC ITCR Analyzer supports measurement of PTC transmitted signals with a direct connection to the transmitter (through a power attenuator) or over-the-air with an antenna. The signal analyzer input has the sensitivity to measure PTC signals down to -115 dBm, allowing transmitter problems to be analyzed and verified miles away. Support for analysis of continuous and burst/packet DQPSK data at Half Rate (8 ksps) and Full Rate (16 ksps) symbol rates is provided.

The built-in PTC ITCR signal generator offers three test patterns with various combinations ranging from simple 0.153 (PN9) pattern to 0.153 patterns with various preambled (as defined by ITCR v1.0 R02).

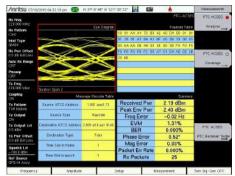
The generator power level can be controlled over a 130 dB range from 0 to -130 dBm to support receiver sensitivity measurements. The 0 dBm signal level supports amplification to higher levels with an external amplifier for use as a temporary BER test transmitter for coverage assessment. The frequency of the PTC ITCR signal generator is independently settable from the PTC ITCR Analyzer frequency.

Features include analysis of:

- RF Quality
- Modulation Quality
- Channel Quality

RF Measurements

- Received channel power
- Frequency error
- Channel Spectrum
- Eye Diagram
- Constellation


DQPSK Modulation Measurements

- Error Vector Magnitude
- BER
- IQ Imbalance
- Magnitude & Phase Error
- Symbol Rate Error

PTC ITCR Analyzer Patterns

- 0153 cont 1 8000
- 0153_cont_2_8000
- 0153_cont_3_8000
- pn9_normal_1_8000
- pn9_normal_2_8000pn9_normal_3_8000
- pn9_normal_4_8000
- pn9_normal_seq_8000
- 0153_cont_1_16000
- 0153_cont_2_16000
- 0153_cont_3_16000
- pn9_normal_1_16000
- pn9_normal_2_16000
- pn9_normal_3_16000pn9_normal_4_16000
- pn9_normal_seq_16000
- CW
- am_1khz_audio
- fm_1khz_audio

PTC ACSES Analyzer (Options 731 and 733)

PTC ACSES Analyzer Payload Table

PTC ACSES Analyzer

The PTC ACSES Analyzer option 731, is designed to test and verify the performance of Positive Train Control (PTC) - Advanced Civil Speed Enforcement System (ACSES) used in passenger rail safety applications.

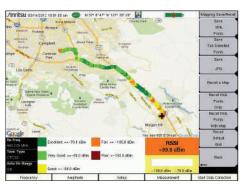
The PTC ACSES Analyzer has many useful RF tools that help determine the performance of the system; constellation diagram, spectrum, eye diagram, message decode table and payload table, will measure Received Power, Peak Envelope Power, Frequency Error, GMSK: Error Vector Magnitude (EVM), BER, Phase Error, Magnitude Error, RS decoder, PTC ACSES Talk Out coverage measurements BER, RSSI, EVM, PER.

FOR EXAMPLE OF A CONTROL OF A C

PTC ACSES Receiver Test Signal Generator

PTC ACSES Signal Generator (option 731)

Option 731 also includes a PTC ACSES signal generator (500 KHz to 1.6 GHz) which generates GMSK signal patterns (Generic TSR1, TSR+beacon, Customer pattern, CW, AM, FM) from 0 dBm to -130 dBm, to test both TSR and beacons, and check for appropriate response from the PTC ACSES receiver.



PTC ACSES Coverage Mapping RSSI, EVM, and BER on $\operatorname{\mathsf{map}}$

PTC ACSES Coverage

The PTC ACSES coverage option 733 allows users to check PTC ACSES frequency coverage and quality while traveling different rail routes, users can import maps of the desired area/route and can simultaneously collect and plot RSSI, BER and EVM of the PTC ACSES signal received.

LMR Coverage Measurements

The LMR Coverage Mapping options provide a map-based view of measurement results along with GPS status. The data points are color-coded according to user-definable level bins for the selected measurement.

The LMR Coverage Mapping options generate a Google Earth KML file with color push pins indicating BER, Modulation Fidelity or EVM, RSSI, THD, or SINAD.

TI HAPP DATA	and the same		olo III			Т
72 #P1 GPS Stat. Lamphole 19	Latedo NI UK Date UTCT	me Eystern Di System Tir Mouse	CHIEF			
7) Ford#1 9FS Lack -121 898834	17 tagger 3900tt 204	12 300011 1239# P05	PESYEN: 400 http://	1773ERN	I Eur	Tipse
70 Fore#2 GPS Ltd121.656661	\$7.14696 \$9300 2040	15 39201 12399 725	FESTIEN 102 MAF 67	1.75 BERS.	1 Eur.	Poni
75 Food#3 GPS Lack -121 E5664	F14895 19300 304	20 30001 12:09:0 P25	RSS(disk -104) half of	1 17 BERS	15m	Non
78 Robert 69'S Lack -121 858851	7/14699 3/3001 204	3/ 3/3001 12:39:EF25	PSS(YEW JID NoFill)	175 BER(S)	15m	Nim
77 Former's GPS Lank -121 (BBBAC)	17 1461 39301 304	28 30001 12400 P25	RSS()Em -3.04 NmFn(1	I TO BERING	I Em:	Non
THE Point OF BYS Link - CO. ESSEE	F1460 19000 204	3 30001 12/0/II P25	RSS(JEW -3.02)MWFW/I	1.77 BERS	1 Eur	Non
TO FORET SPS List - 121 (ESSEE)	21EH 39001 204	35 39201 1240:0 P25	FSS(EN - 1021NAFIST	15 85%	1Em:	Non
88 Fordiffs SPS Lack 1216567	7.14622 35000 204	30 30201 1240 9 PS	RSS(die -101 Nodfulf	178 MER(%)	I Em:	No
8 Robert SPS Lack 12 EEEE	7.14E26 390011 204	@ 30201 1240:7 P25	RSS(Ele 400 Mulf of	1.76 BERS	1 Em	Vas
C Form#10 GPS Lask -171 EGGEL	IF 14E33 33001 204	46 393011 124021 P25	RESOLUTE - 3 (13 Plant fill)	INSENT	1Em	The
80 Foreitt (PS Luck - CA EGGET	F1657 193011 204	49 300011 124031 P25	RSSOEM - 316 NoviFelt	177 BPRN	I Eur	Non
Bit Fore#12 BPS Link -121 ESSEN	7.1661 39001 204	50 3000H 12403HPS	PSS(yEx: -3.03 ModFig!)	1 76 BSRN	I Enr.	Too
85 Ford#13 GPS Ltdx -121.896885	F.1463 35301 204	ST 390011 124012 P25	PSS(VEN -1.08 Hole of	LIT BERS)	1 Enr.	No
8 Form 14 GPS Lack -121 EGGET	F1463 19301 204	OI 30001 1240-5 P25	RSS(yEn -1/3) Null of	173 959(5)	15m	Non
67 Robal 15 SPS Lack -121 ESSTA	7/1403 15001 204	04 300011 1240:9 825	PSS(IEW 400 No.Full	1.77 1159(5)	1Em	Nin
88 Form#16 GPS Lank: 421 856802	F 14606 39001 204	OF 300001 124040 P25	RESOLUTION - BEET MANUFALL	I TO BEREY	I Entr	Non
88 Point 17 EPS Link - 121 ESSEE	7.14E22 193011 204	11 300011 124046 P25	RSS()Ew 4/04 Houlfull	V TO BERN	1 Eur	Non
90 Forer 18 GPS Luck - 121 ERRER	2168 35001 204	15 39201 124050 PZ5	FSS(IEW - 1021NoFist)	L15.85%).	1 Env.	Non
9. Ford#19. GPS Lack: -121.856814	7.14610 35000 304	18 30201 124051 PS	RSSYEM - ALBRIGGIN	178 168(%)	Him.	No
90 Rose(20) SPS Ltds -121 (ESBOY	7.14E14 333011 204	22 302011 12:405° P25	RSS(iEm 206NhiEnt)	1 73 BER(5)	1 Em	Yes
90 Form#21 GPS Lask -171 #56825	F1幅14 39001 204	2E 393011 1241 11 PSE	RESONAL - 3.03 PrintFoll	175 HEWN	1 Enr	Ibo
98 For#22 SPS Link -01 (E680)	〒1661年 593001 204	25 300011 1241 N PS	FSSOEM - 3.05 May Fight	179369(%)	1 Ew	No
95 Forest 29 SPS Lab C21 (8582)	57,14E14 350001 20x	35 35001 1241 B P25	PSS(EN -133 NoFeF	LIS BERGS	1 Enr	Ton
S Fore A SPS Lade - 121 EEE V	37.14600 150001 30.4	36 36281 1241 TI P25	RSSYEW 400 No.F at 1	I TO HERS!	1 Eur	Van

The LMR Coverage Mapping options provide a tab delimited text file for viewing with spreadsheet applications, custom post-processing scripts, or for importing into 3rd-party coverage prediction software.

LMR Coverage Measurements

The LMR Coverage Measurement options, combined with the GPS Option 31, measures and logs key signal quality parameters of land mobile radio systems. For analog FM systems, RSSI, THD and Transmitter SINAD can be mapped. For digital LMR systems BER, Modulation Fidelity (or Error Vector Magnitude), and RSSI can be mapped. All data points are tagged with a GPS location and time and saved to memory approximately once every two seconds. Two files are exportable; a tab-delimited text file for importing to spreadsheet and custom analysis scripts, or an industry-standard KML file for viewing with geo-mapping software such as Google Earth™. In cases where a GPS signal is not available, the LMR Master allows the user to import a floor plan or other map image and use the high-resolution color touchscreen to record data points.

The RSSI value stored into memory is an average of approximately 50,000 separate samples per second taken during the measurement period.

The EVM or Modulation Fidelity values give a good indication of the amount of multipath on the measured signal.

For in-service channel measurements, the Control Channel pattern measures the message error rate and estimates the BER from analysis of the forward error correction on the control channel data.

The Voice pattern estimates the BER on live voice traffic from analysis of the forward error correction data, eliminating the need to take critical systems off the air for analysis and allowing coverage confirmation without operational disruption.

Coverage Mapping Parameters

- Received Channel Frequency
- Receive Signal Pattern
- Auto Receive Range
- Indoor Mapping Repeat Type (Time or Distance)
- Repeat Time
- Repeat Distance
- Distance Units

Coverage Mapping Types

- Analog FM: RSSI, THD, SINAD
- Audio SINAD from External Receiver
- Digital LMR: RSSI, BER, Mod Fid or EVM

Mapping Color Codes

- 5 Levels
- 4 Break Points
- User-adjustable

LTE Signal Analyzers (Options 541, 542, 546, 886)

Modulation Quality – Power vs. Resource Block A high utilization of the Resource Blocks would indicate a cell site in nearing overload and it may be appropriate to start planning for additional capacity.

/inritsu aser	2912 11 54 17 av				Madadator
Center Freq 751.000 MHz				Cantrol Charmen	Pawer vs. C
Channel	Control Channel	EVM	Power/RE	Total Power	Constitution
eference Source	RS	1.31 %	-81.55 dBm	-64.28 dBm	- Line
INI SHE Accy	P-SS	0.96 %	-79.11 dBm	-79.93 dBm	Costrol Change
Fower Offset 0.0 dR Ext Loss	S-SS	1.01 %	-79.11 dBm	-79.93 dBm	Passer
Auto Range	PBCH	1.11 %	-79.17 dBm	-76.72 dBm	Tis (
On	PCFICH	1.19 %	-81,44 dBm	-81,16 dBm	Time Abbonest
20 MHz	PHICH	1.20 %	-81,46 dBm	-77.66 dBm	
EVM Mode Auto: PDSCH	PDCCH	1.28 %	-80.25 dBm	-63.44 dBm	
Bunc Type	Ng = 1/6		Total	-58.97 dBm	
Namal (SS)	Total LTE Channel F	ower (RF)	All	-50.58 dBm	
					Montation (
	Ref Signal (RS) Power +81.5 dbm	EVM (ms)	Pieq Eitzi 167.6 H2	Carrier Frequency 751,000 169 Netz	
	Sync Segnal (SS) Pewer -79.1 dilles	EVM (IN) Z N7 %	Freq Ever (sym) 0.222	CNID	Biot.
Freq	Ampittude		Setto h	Pencaretrer#s	Marker

Modulation Quality - Control Channels

High values will create larger areas of cell-to-cell interference and create lower data rates near cell edges. Low values affect in-building coverage.

Over-the-Air Measurements - Tx Test

By looking at the reference signals of MIMO antennas one can determine if MIMO is working properly. If the delta power is too large, there is an issue.

LTE Signal Analyzers

The LMR Master features three LTE measurement modes:

- RF Measurements
- Modulation Measurements
- Over-the-Air Measurements (OTA)

The goal of these measurements is to increase data rate and capacity by accurate power settings, ensuring low out-of-channel emissions and good signal quality. These attributes help to create a low dropped call rate, a low blocked call rate, and a good customer experience.

Cell site technicians or RF engineers can make measurements Over-the-Air (OTA) to spot-check a transmitter's coverage and signal quality without taking the cell site off-line. When the OTA test results are ambiguous, one can directly connect to the base station to check the signal quality and transmitter power.

Power vs. Resource Block

Determination of system capacity is often best done by analyzing the power by resource blocks. Highly utilized LTE systems may be nearing capacity. Understanding resource block performance allows system planners to anticipate crowding and scale systems for future growth.

Cell ID (Sector ID, Group ID)

Cell ID indicates which base station is being measured OTA. The strongest base station at your current location is selected for measurement. Wrong values for Cell ID lead to inability to register. If the cause is excessive overlapping coverage, it also will lead to poor EVM and low data rates

Frequency Error

Frequency Error is a check to see that the carrier frequency is precisely correct. The LMR Master can accurately measure Carrier Frequency Error OTA if the instrument is GPS enabled or in GPS holdover. Calls will drop when terminals travel at higher speed. In some cases, user equipment cannot hand off into, or out of the cell.

Sync Signal Mapping

Sync Signal Scanner can be used with the GPS to save scan results for later display on a map. The EVM of the strongest synch signal available at that spot is also recorded. The Cell, Sector, and Group ID information is also included so that it's easier to interpret the results. Once the Synch Signals are mapped, it becomes much easier to understand and troubleshoot any interference or coverage issues.

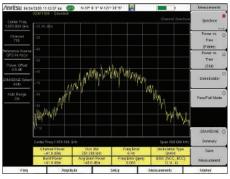
RF Measurements (Option 541)

- · Channel Spectrum
- Channel Power
- Occupied Bandwidth
- ACPR
- RF Summary

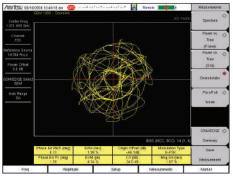
Modulation Measurements (Option 542)

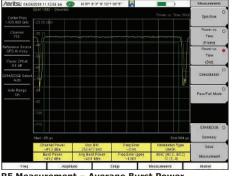
- Power vs. Resource Block (RB)
 - RB Power (PDSCH)
 - Active RBs, Utilization %
 - Channel Power, Cell ID
 - · OSTP, Frame EVM by modulation
- Constellation
- OPSK, 16 OAM, 64 OAM
- 256 QAM (Option 886)
 - · Modulation Results
 - Ref Signal Power (RS)
 - Sync Signal Power (SS)
 - EVM rms, peak, max hold
 - Frequency Error Hz, ppm
 - Carrier Frequency
 - Cell ID
- Control Channel Power
 - Bar Graph or Table View
 - RS, P-SS, S-SS
 - PBCH, PCFICH, PHICH, PDCCH
 - Total Power (Table View)
 - EVM
- Tx Time Alignment
- Modulation Summary
 - Includes EVM by modulation

Over-the-Air Scanner (Option 546)


- Scanner
 - Cell ID (Group, Sector)
 - S-SS, RSRP, RSRQ, SINR
 - Dominance
 - Modulation Results On/Off
 - Auto Save On/Off
- Tx Test
 - Scanner
 - RS Power of MIMO antennas
 - Cell ID, Average Power
 - Delta Power (Max-Min)
 - Graph of Antenna Power
 - Modulation Results On/Off
- Mapping
 - On-screen
 - \bullet S-SS, RSRP, RSRQ, or SINR
- Scanner
 - Modulation Results Off

Pass/Fail


- View Pass/Fail Limits
 - All, RF, Modulation
- Available Measurements
 - Channel Power
 - Occupied Bandwidth
 - ACLR
 - Frequency Error
 - Carrier Frequency
 - Dominance
 - EVM peak, rms
 - RS Power
 - SS, P-SS, S-SS Power
 - PBCH Power
 - PCFICH Power
 - Cell, Group, Sector ID
 - OSTP
 - Tx Time Alignment


GSM/EDGE Signal Analyzers (Option 880)

RF Measurement – Occupied Bandwidth Excessive occupied bandwidth can create interference with adjacent channels or be a sign of poor signal quality, leading to dropped calls.

Demodulation – Error Vector Magnitude (EVM)This is the single most important signal quality measurement. Poor EVM leads to dropped calls, low data rate, low sector capacity, and blocked calls.

RF Measurement – Average Burst Power High or low values will create larger areas of cell-tocell interference and create lower data rates near cell edges. Low values create dropouts and dead zones.

Pass/Fail Test

Set up common test limits, or sets of limits, for each instrument. Inconsistent settings between base stations, leads to inconsistent network behavior.

GSM/EDGE Analyzers

The Spectrum Master features two GSM/EDGE measurement modes.

- RF Measurements
- Demodulation

The goal of these measurements is to increase data rate and capacity by accurate power settings, ensuring low out-of-channel emissions, and good signal quality. These attributes help to create a low dropped call rate, a low blocked call rate, and a good customer experience.

Cell site technicians or RF engineers can make measurements Over-the-Air (OTA) to spot-check a transmitter's coverage and signal quality without taking the cell site off-line. When the OTA test results are ambiguous one can directly connect to the base station to check the signal quality and transmitter power.

For easy identification of which cell you are measuring the Base Station Identity Code (BSIC) gives the base station id, the Network Color Code (NCC) identifies the owner of the network, and the Base Station Color Code (BCC) provides the sector information.

Carrier-to-Interference (C/I)

C/I indicates the quality of the received signal. It also can be used to identify areas of poor signal quality. Low C/I ratios will cause coverage issues including dropped calls, blocked calls, and other handset reception problems.

Phase Error

Phase Error is a measure of the phase difference between an ideal and actual GMSK modulated voice signal. High phase error leads to dropped calls, blocked calls, and missed handoffs.

Origin Offset

Origin Offset is a measure of the DC power leaking through local oscillators and mixers. A high Origin Offset will lower EVM and Phase Error measurements and create higher dropped call rates.

Power versus Time (Slot and Frame)

Power versus Time (Slot and Frame) should be used if the GSM base station is setup to turn RF power off between timeslots. When used OTA, this measurement can also spot GSM signals from other cells. Violations of the mask create dropped calls, low capacity, and small service area issues.

RF Measurements

Channel Spectrum

Channel Power

Occupied Bandwidth

Burst Power

Average Burst Power

Frequency Error

Modulation Type BSIC (NCC, BCC)

Multi-channel Spectrum

Power vs. Time (Frame/Slot)

Channel Power

Occupied Bandwidth

Burst Power

Average Burst Power

Frequency Error

Modulation Type

BSIC (NCC, BCC)

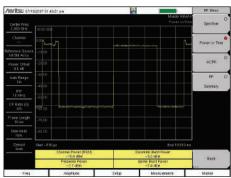
Demodulation

Phase Error EVM

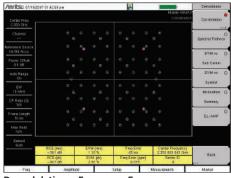
Origin Offset

C/I

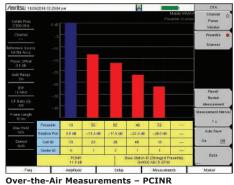
Modulation Type


Magnitude Error

BSIC (NCC, BCC)



Fixed and Mobile WiMAX Signal Analyzers (Options 46, 47, 66, 67, 37)



RF Measurement – Preamble Power High or low values will create larger areas of cell-tocell interference and create lower data rates near cell


edges. Low values affect in-building coverage.

Demodulation – Frequency ErrorCalls will drop when user's equipment travels at high speed. In severe cases, hand offs will not be possible at any speed, creating island cells.

Over-the-Air Measurements – PCINK
A low Physical Carrier to Interference plus Noise Ratio
(PCINR) indicates poor signal quality, low data rate and
reduced sector capacity.

Fixed and Mobile WiMAX Signal Analyzers

The LMR Master features two Fixed WiMAX and three Mobile WiMAX measurement modes:

- RF Measurements
- Demodulation (up to 10 MHz)
- Over-the Air Measurements (OTA) (Mobile only)

The goal of these measurements is to increase data rate and capacity by accurate power settings, ensuring low out-of-channel emissions, and good signal quality. These attributes help to create a low dropped call rate, a low blocked call rate, and a good customer experience.

Cell site technicians or RF engineers can make measurements Over-the-Air (OTA) to spot-check a transmitter's coverage and signal quality without taking the cell site off-line. When the OTA test results are ambiguous one can directly connect to the base station to check the signal quality and transmitter power.

Cell ID, Sector ID, and Preamble

Cell ID, Sector ID, and Preamble show which cell, sector, and segment are being measured OTA. The strongest signal is selected automatically for the additional PCINR and Base Station ID measurement. Wrong values for cell, sector and segment ID lead to dropped hand offs and island cells. If the cause is excessive coverage, it also will lead to large areas of low data rates.

Error Vector Magnitude (EVM) Reletive Constellation Error (RCE)

RCE and EVM measure the difference between the actual and ideal signal. RCE is measured in dB and EVM in percent. A known modulation is required to make these measurements. High RCE and EVM causes low signal quality, low data rate, and low sector capacity. This is the single most important signal quality measurement.

Preamble Mapping (Mobile WiMAX)

Preamble Scanner can be used with the GPS to save scan results for later display on a map. PCINR ratio for the strongest WiMAX preamble available at that spot. The Base Station ID and Sector ID information are also included so that it's easier to interpret the results. Once PCINR data is mapped, it becomes much easier to understand and troubleshoot any interference or coverage issues.

RF Measurements

(Option 46/66, Fixed/Mobile)

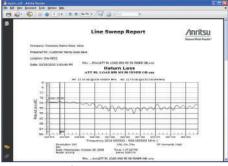
- · Channel Spectrum
 - Channel Power
 - Occupied Bandwidth
- Power vs. Time
 - Channel Power
 - · Preamble Power
 - Downlink Burst Power (Mobile only)
 - Uplink Burst Power (Mobile only)
 - Data Burst Power (Fixed only)
 - Crest Factor (Fixed only)
- ACPR

Demodulation (10 MHz maximum) (Option 47/67, Fixed/Mobile)

- Constellation
 - RCE (RMS/Peak)
 - EVM (RMS/Peak)
 - Frequency Error
 - CINR (Mobile only)
 - Base Station ID
 - Carrier Frequency
 - Sector ID
- Spectral Flatness
 - Adjacent Subcarrier Flatness
- EVM vs. Subcarrier/Symbol
 - RCE (RMS/Peak)
 - EVM (RMS/Peak)
 - Frequency Error
 - CINR (Mobile only)
 - Base Station ID
 - Sector ID (Mobile only)
- DL-MAP (Tree View) (Mobile only)

Over-the-Air (OTA) (Option 37 Mobile only)

- Channel Power Monitor
 - Preamble Scanner (Six)
 - Preamble
 - Relative Power
 - Cell ID
 - Sector ID
 - PCINRDominant Preamble
 - Base Station ID
- Auto-Save with GPS Tagging and Logging



Master Software Tools™ (for your PC)

Trace Validation

Marker and Limit Line presets allow quick checks of traces for limit violations.

Report Generation

Create reports with company logo, GPS tagging information, calibration status, and serial number of the instrument for complete reporting.

Line Sweep Tools™

Line Sweep Tools increases productivity for people who deal with dozens of Cable and Antenna traces, or Passive Inter-Modulation (PIM) traces, every day.

User Interface

Line Sweep Tools has a user interface that will be familiar to users of Anritsu's Hand Held Software Tools. This will lead to a short learning curve.

Marker and Limit Line Presets

Presets make applying markers and a limit line to similar traces, as well as validating traces, a quick task.

Renaming Grid

A renaming grid makes changing file names, trace titles, and trace subtitles from field values to those required for a report much quicker than manual typing and is less prone to error.

Report Generator

The report generator will generate a professional looking PDF of all open traces with additional information such as contractor logos and contact information.

Line Sweep Features

Presets

7 sets of 6 markers and 1 limit line Next trace capability

File Types

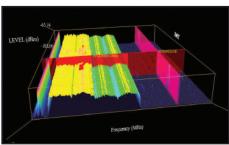
Input: HHST DAT, MNA and VNA Measurements: Return Loss (VSWR), Cable Loss, DTF-RL, DTF-VSWR, PIM

Output: LS DAT, MNA, VNA, CSV, PNG, BMP, JPG, PDF

Report Generator

Logo, title, company name, customer name, location, date and time, filename, PDF, HTML, all open traces

Tools


Cable Editor
Distance to Fault
Measurement calculator
Signal Standard Editor
Renaming Grid

Interfaces

Serial, Ethernet, USB

Capture Plots to

Screen, Database, DAT files, JPEG, Instrument

3D Spectrogram

For in-depth analysis with 3-axis rotation viewing, threshold, reference level, and marker control. Turn on Signal ID to see the types of signals.

Master Software Tools™

Master Software Tools (MST) is a powerful PC software post-processing tool designed to enhance the productivity of technicians in data analysis and testing automation.

Folder Spectrogram

Folder Spectrogram – creates a composite file of up to 15,000 multiple traces for quick review, also create:

- Peak Power, Total Power, and Peak Frequency plotted over time
- Histogram filter data and plot number of occurrences over time
- Minimum, Maximum, and Average Power plotted over frequency
- Movie playback playback data in the familiar frequency domain view
- 3D Spectrogram for in-depth analysis with 3-axis rotation viewing control

Master Software Tools Features

Database Management

Full Trace Retrieval Trace Catalog Group Edit Trace Editor

Data Analysis

Trace Math and Smoothing Data Converter Measurement Calculator

Mapping (GPS Required)

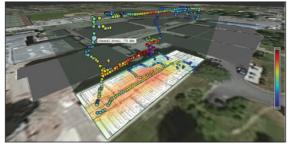
Spectrum Analyzer Mode Mobile WiMAX OTA Option TS-SCDMA OTA Option LTE, both FDD and TDD Options

Folder Spectrogram

Folder Spectrogram – 2D View Video Folder Spectrogram – 2D View Folder Spectrogram – 3D View

List/Parameter Editors

Traces
Antennas, Cables, Signal Standards
Product Updates
Firmware Upload
Pass/Fail
VSG Pattern Converter
Languages
Mobile WiMAX
Display


MA8100A Series TRX NEON Signal Mapper

NEON Signal Mapping with Anritsu Handhelds

Support fvor NFPA Gridding Requirements

Automatically generate 3-D Heatmaps

Automatic Report Generation

MA8100A Series TRX NEON® Signal Mapper*

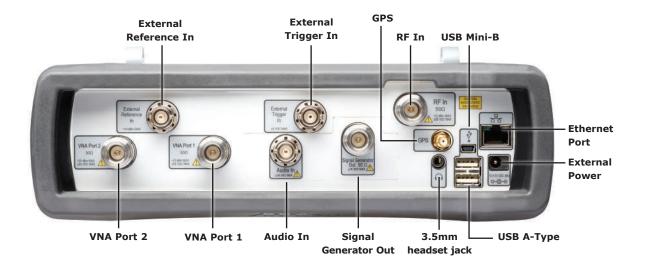
The most powerful 3D in-building coverage mapping tool specially for Anritsu Handheld Spectrum Analyzers

Anritsu's TRX NEON Signal Mapper, a 3D in-building coverage mapping solution, is compatible with all Anritsu handheld instruments with spectrum analyzer mode. Instruments supported include Spectrum Master, LMR Master, Site Master, BTS Master, Cell Master, and VNA Master.

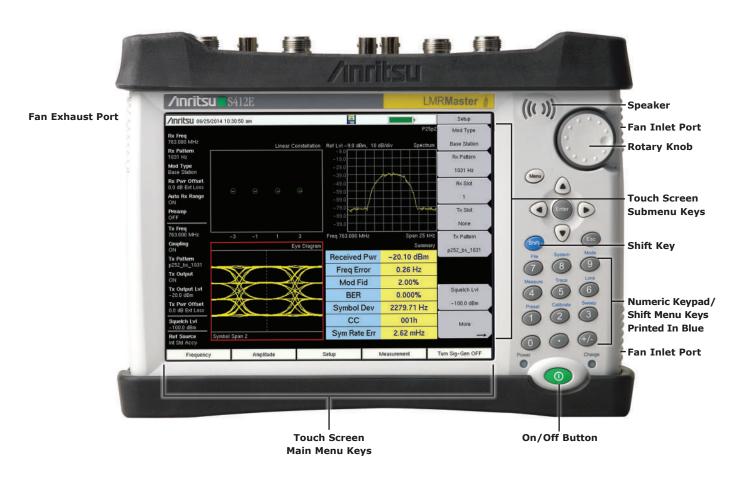
The MA8100A-00x consists of both hardware and software from TRX Systems, a 3rd party partner. The MA8100A-00x consists of a TRX Systems NEON Tracking Unit, NEON Signal Mapper Software for Android devices, and NEON Command Software for a PC.

The TRX NEON Tracking Unit supports collection and processing of sensor data that delivers 3D location information. The Tracking Unit connects to the TRX NEON Signal Mapper application which is run on an Android device via a Bluetooth connection.

The TRX NEON Signal Mapper application provides an intuitive Android user interface enabling lightly trained users to map RF signals within buildings. Users can initialize their location, start/stop mapping and save mapping data to the cloud. RF data is captured by an Anritsu Handheld spectrum analyzer product and the data is sent to the Android device via a USB connection.


The TRX NEON Command Software, run on a PC, enables creation and visualization of 3D building maps and provides centralized access to the TRX NEON Cloud Service to access stored maps and measurement data.

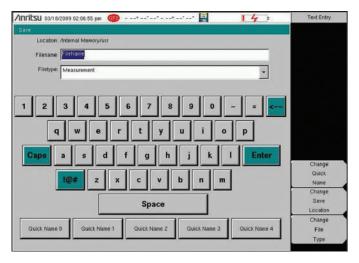
Key Features and Benefits


Integrating NEON's capability to automatically collect geo-referenced test data with Anritsu handheld spectrum analyzer products saves valuable time and money by:

- Eliminating the need to manually perform "check-ins" at each test point by automatically calculating indoor location
- Providing vastly more data than is possible with manual processes by recording data with every step
- Removing typical data recording errors caused by "guesstimating" locations in large buildings through automatic indoor location and path estimation
- Delivering actionable data in areas not easily analyzed such as stairways and elevators by recording and referencing measurements in 3D
- Enabling quick analysis of signal coverage and faster problem resolution by delivering the industry's only geo-referenced 3D visualization
- Provides color-graded measurement results in 2D and 3D views.
 Measurement values can be seen by clicking on each point. A .csv file of all measurements is also provided.

^{*}Android device and PC are NOT included in the MA8100A-00x. Customers must purchase their own Android device and PC.

All Connectors are conveniently located on the top panel, leaving the sides clear for handheld use


Handheld Size: 273 x 199 x 91 mm, (10.7 x 7.8 x 3.6 in), Lightweight: 3.6 kg, (7.9 lbs)

Touchscreen Menu

The Menu Key activates the touchscreen menu for one button access to all of the Analyzers. $\,$

User defined shortcuts can be created for one-button access to commonly used functions.

Touchscreen Keyboard

A built-in touch screen keyboard saves valuable time in the field when entering trace names.

For Cable and Antenna Analysis, a Quick Name Matrix can be customized for quickly naming your line sweeps.

Tilt bails are integrated into the case and soft case for better screen viewing.

Ordering Information – Options

	S412E 500 kHz to 1.6 GHz	Description Vector Network Analyzer
مالي	9 kHz to 1.6 GHz	Spectrum Analyzer
	10 MHz to 1.6 GHz	Power Meter
-w	500 kHz to 1.6 GHz	CW Signal Generator
Narw	10 MHz to 1.6 GHz	NBFM Analyzer
etion)	Options S412E-0010	High Voltage Variable Bias Tee
	S412E-0031	GPS Receiver (requires suitable GPS antenna)
	S412E-0019	High-Accuracy Power Meter (requires External Power Sensor)
	S412E-0025	Interference Analyzer (Option 31 recommended)
lorald	S412E-0027	Channel Scanner
(111111111)	S412E-0006 S412E-0016	6 GHz Coverage on Spectrum Analyzer 6 GHz Coverage on Vector Network Analyzer
MAG	S412E-0015	Vector Voltmeter
	S412E-0431	Coverage Mapping (requires Option 31)
(#ME)	S412E-0444	EMF Measurements (requires Anritsu Isotropic Antenna)
M	S412E-0509	AM/FM/PM Analyzer
P25	S412E-0521	P25/P25p2 Analyzer Measurements P25/P25p2 Coverage Measurements (requires Options 31 and 521)
	S412E-0522	NXDN Analyzer Measurements
NXON A	S412E-0531 S412E-0532	NXDN Coverage Measurements (requires Options 31 and 531)
DPMR	S412E-0573 S412E-0572	dPMR RF Analyzer Measurements dPMR Coverage Measurements (requires Options 31 and 573)
Terra	S412E-0581 S412E-0582	TETRA Analyzer Measurements TETRA Coverage Measurements (requires Options 31 and 581)
OMR 2	S412E-0591 S412E-0592	DMR (MOTOTRBO) Analyzer Measurements DMR (MOTOTRBO) Coverage Measurements (requires Options 31 and 591)
PID	S412E-0721 S412E-0722 S412E-0731	PTC ITCR Analyzer PTC ITCR Coverage Measurements (requires Options 31 and 721) PTC ACSES Analyzer
	S412E-0733	PTC ACSES Coverage Measurements (requires Options 31 and 731)
	S412E-0541 S412E-0542 S412E-0886 S412E-0546	LTE RF Measurements LTE Modulation Quality LTE 256QAM Demodulation (Requires Option 542) LTE Over-the-Air Measurements (requires Option 31)
		GSM/GPRS/EDGE Measurements
	S412E-0880 S412E-0046	IEEE 802.16 Fixed WiMAX RF Measurements (requires Option 6)
FW	S412E-0047	IEEE 802.16 Fixed WiMAX Demodulation (requires Option 6)
	S412E-0066 S412E-0067 S412E-0037	IEEE 802.16 Mobile WiMAX RF Measurements (requires Option 6) IEEE 802.16 Mobile WiMAX Demodulation (requires Option 6) IEEE 802.16 Mobile WiMAX Over-the-Air Measurements (requires Option 6; Option 31 required for full functionality)
	S412E-0098 S412E-0099	Standard Calibration to ISO17025 and ANSI/NCSL Z540-1. Includes calibration certificate. Premium Calibration to ISO17025 and ANSI/NCSL Z540-1. Includes calibration certificate, test report, and uncertainty data.

Standard Accessories – (Included with instrument)

Part Number Description

2000-1691-R Stylus with Coiled Tether

2000-1797-R Screen Protector Film, 8.4 inch (2, one installed)

2000-1654-R Soft Carrying Case

633-75 Rechargeable 7500 mAh Li-Ion Battery

40-187-R AC-DC Adapter

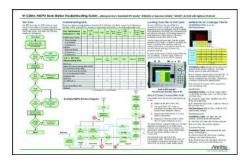
806-141-R Automotive Power Adapter, 12 VDC, 60 W

3-2000-1498 USB A-type to Mini USB B-type cable, 3.05 m (10 ft)

Standard Three Year Warranty (one year on battery)

Certificate of Conformance

Manuals, Related Literature (Soft copy at www.anritsu.com)


Part Number Description

10580-00065 Product Information, Compliance, and Safety 10580-00318 LMR Master User Guide 10580-00289 Vector Network Analyzer Measurement Guide 10580-00243 Land Mobile Radio Measurement Guide 10580-00241 Cable and Antenna Analyzer Measurement Guide 11410-00349 Spectrum Analyzer Measurement Guide 10580-00240 Power Meter Measurement Guide 10580-00234 3GPP Signal Analyzer Measurement Guide

10580-00236 WiMAX Signal Analyzer Measurement Guide

10580-00319 Programming Manual

Troubleshooting Guides (Soft copy at www.anritsu.com)

Part Number Description

11410-00551 Spectrum Analyzers 11410-00472 Interference

11410-00566 LTE eNode Testing

11410-00466 GSM/GPRS/EDGE Base Stations 11410-00473 Cable, Antenna, and Component Troubleshooting Guide

11410-00427 Understanding Cable & Antenna Analysis White Paper

Optional Accessories

Backpack and Transit Case

Part Number Description

67135 Anritsu Backpack (For Handheld Instrument and PC) Large Transit Case with Wheels and Handle 760-243-R

56 cm x 45.5 cm x 26.5 cm (22.07" x 17.92" x 10.42")

760-271-R Transit Case for Portable Directional Antennas and Port Extender 52.4 cm x 42.8 cm x 20.6 cm (20.62" x 16.87" x 8.12") (for 2000-1777-R, 2000-1778-R, 2000-1779-R, 2000-1798-R)

USB Power Sensors (for complete ordering information, see the respective data sheets of each sensor)

MA24105A Inline Dual Directional High Power Sensor,

350 MHz to 4 GHz, +3 dBm to +51.76 dBm

High Accuracy RF Power Sensor, MA24106A

50 MHz to 6 GHz, +23 dBm to -40 dBm

MA24108A Microwave USB Power Sensor,

10 MHz to 8 GHz, +20 dBm to -40 dBm

Microwave USB Power Sensor, MA24118A 10 MHz to 18 GHz, +20 dBm to -40 dBm

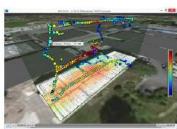
MA24126A Microwave USB Power Sensor,

10 MHz to 26 GHz, +20 dBm to -40 dBm

MA24208A Microwave Universal USB Power Sensor,

10 MHz to 8 GHz, +20 dBm to -60 dBm

Microwave Universal USB Power Sensor. MA24218A 10 MHz to 18 GHz, +20 dBm to -60 dBm


MA24330A Microwave CW USB Power Sensor, 10 MHz to 33 GHz, +20 dBm

MA24340A Microwave CW USB Power Sensor, 10 MHz to 40 GHz, +20 dBm

MA24350A Microwave CW USB Power Sensor, 10 MHz to 50 GHz, +20 dBm

MA25100A RF Power Indicator

MA8100A TRX NEON® Signal Mapper

Model Number Description

MA8100A-001 TRX NEON Signal Mapper with Anritsu Integration and Tracking Unit. Includes 1 year TRX NEON Software License with 1 year of maintenance and

support and 1 year of Cloud Service

TRX NEON Signal Mapper with Anritsu Integration and Tracking Unit. MA8100A-003

Includes 3 years TRX NEON Software License with 3 years of maintenance and

support and 3 years of Cloud Service

TRX NEON Signal Mapper with Anritsu Integration and Tracking Unit. MA8100A-005

Includes 5 years TRX NEON Software License with 5 years of maintenance and support and 5 years of Cloud Service

MA8100A-100 TRX NEON Signal Mapper with Anritsu Integration and Tracking Unit.

2300-606 Perpetual TRX NEON Software License with 3 years of maintenance and support and 3 years of Cloud Service. Part number can also be used to

order a perpetual license after a limited term license has expired

2300-612 Renewal of 1 year TRX NEON Software License with 1 year of maintenance and support and 1 year of Cloud Service

2300-613 Renewal of 3 year TRX NEON Software License with 3 years of maintenance and

support and 3 years of Cloud Service

2300-614 Renewal of 5 year TRX NEON Software License with 5 years of maintenance and

support and 5 years of Cloud Service

Baseband Audio Generator and Oscilloscope

Model Number Description

2000-1897-R USB Baseband Audio generator and 2-Channel oscilloscope

10 MHz bandwidth, 8 kS buffer memory, 16 protocol serial decoder,

USB connected and powered

USB Low Distortion Baseband Audio generator and 2-Channel oscilloscope 2000-1898-R

> 16-bit resolution, low distortion (96 dB SFDR), low noise (8.5 µV RMS), 5 MHz bandwidth, 16 MS buffer memory, low-distortion signal generator,

arbitrary waveform generator, USB powered

Miscellaneous Accessories

Part NumberDescriptionMA2700AHandheld Interference Hunter (For full specifications, refer to the MA2700A Technical Data Sheet 11410-00692)MA25200AHigh Power Tx/Rx Input Protection Module633-75Rechargeable Li-Ion Battery, 7500 mAh2000-1374External Dual Charger for Li-Ion Batteries2000-1797-RScreen Protector Film66864Rack Mount Kit, Master Platform2000-1689-REMI Near Field Probe Kit

Full Temperature N-Type Coaxial Calibration Kits -10 °C to +55 °C (see individual data sheets on www.anritsu.com)

OSLN50A-8 High Performance Type N(m), DC to 8 GHz, 50 Ω OSLNF50A-8 High Performance Type N(f), DC to 8 GHz, 50 Ω

TOSLN50A-8 High Performance with Through, Type N(m), DC to 8 GHz, 50 Ω TOSLNF50A-8 High Performance with Through, Type N(f), DC to 8 GHz, 50 Ω

Coaxial Calibration Components, Other 50 Ω , 75 Ω

Part Number Description

Part Number Description

22N50	Precision N(m) Short/Open, 18 GHz
22NF50	Precision N(f) Short/Open, 18 GHz
28N50-2	Precision Termination, DC to 18 GHz, 50 Ω , N(m)
28NF50-2	Precision Termination, DC to 18 GHz, 50 Ω , N(f)
SM/PL-1	Precision N(m) Load, 42 dB, 6 GHz
SM/PLNF-1	Precision N(f) Load, 42 dB, 6 GHz
2000-1618-R	Open/Short/Load, 7/16 DIN(m), DC to 6.0 GHz 50 Ω
2000-1619-R	Open/Short/Load, 7/16 DIN(f), DC to 6.0 GHz 50 Ω
2000-1914-R	Precision Open/Short/Load, 4.3-10(f), DC to 6 GHz, 50 Ω
2000-1915-R	Precision Open/Short/Load, 4.3-10(M), DC to 6 GHz, 50 Ω
12N50-75B	Matching Pad, DC to 3 GHz, 50 Ω to 75 Ω
22N75	Open/Short, N(m), DC to 3 GHz, 75 Ω
22NF75	Open/Short, N(f), DC to 3 GHz, 75 Ω
26N75A	Precision Termination, N(m), DC to 3 GHz, 75 Ω
26NF75A	Precision Termination, N(f), DC to 3 GHz, 75 Ω
1091-55-R	Open, TNC(f), DC to 18 GHz
1091-53-R	Open, TNC(m), DC to 18 GHz
1091-56-R	Short, TNC(f), DC to 18 GHz
1091-54-R	Short, TNC(m), DC to 18 GHz
1015-54-R	Termination, TNC(f), DC to 18 GHz
1015-55-R	Termination, TNC(m), DC to 18 GHz

Miscellaneous Accessories - (Continued)

Adapters

Part Number Description

1091-26-R	SMA(m) to N(m), DC to 18 GHz, 50 Ω
1091-27-R	SMA(f) to N(m), DC to 18 GHz, 50 Ω
1091-80-R	SMA(m) to N(f), DC to 18 GHz, 50 Ω
1091-81-R	SMA(f) to N(f), DC to 18 GHz, 50 Ω
1091-172	BNC(f) to N(m), DC to 1.3 GHz, 50Ω
510-90-R	7/16 DIN(f) to N(m), DC to 7.5 GHz, 50 Ω
510-91-R	7/16 DIN(f) to N(f), DC to 7.5 GHz, 50 Ω
510-92-R	7/16 DIN(m) to N(m), DC to 7.5 GHz, 50 Ω
510-93-R	7/16 DIN(m) to N(f), DC to 7.5 GHz, 50 Ω
510-96-R	7/16 DIN(m) to 7/16 DIN (m), DC to 7.5 GHz, 50 Ω
510-97-R	7/16 DIN(f) to 7/16 DIN (f), DC to 7.5 GHz, 50 Ω
513-62	Adapter, DC to 18 GHz, TNC(f) to N(f), 50 Ω
1091-315	Adapter, DC to 18 GHz, TNC(m) to N(f), 50 Ω
1091-324	Adapter, DC to 18 GHz, TNC(f) to N(m), 50 Ω
1091-325	Adapter, DC to 18 GHz, TNC(m) to N(m), 50 Ω
1091-317	Adapter, DC to 18 GHz, TNC(m) to SMA(f), 50 Ω
1091-318	Adapter, DC to 18 GHz, TNC(m) to SMA(m), 50 Ω
1091-323	Adapter, DC to 18 GHz, TNC(m) to TNC(f), 50 Ω
1091-326	Adapter, DC to 18 GHz, TNC(m) to TNC(m), 50 Ω
1091-465-R	Adapter, CD to 6 GHz, 4.3-10(f) to N(f), 50 Ω
1091-467-R	Adapter, CD to 6 GHz, 4.3-10(m) to N(f), 50 Ω
510-102-R	N(m) to N(m), DC to 11 GHz, 50 Ω , 90 degrees right angle

Precision Adapters

Part Number Description

34NN50A Precision Adapter, N(m) to N(m), DC to 18 GHz, 50 Ω 34NFNF50 Precision Adapter, N(f) to N(f), DC to 18 GHz, 50 Ω

Filters

Part Number Description 1030-114-R 806 MHz to 869 MHz, N(m) to SMA(f), 50 Ω

1030-109-R 824 MHz to 849 MHz, N(m) to SMA (f), 50 Ω 1030-110-R 880 MHz to 915 MHz, N(m) to SMA (f), 50 Ω 1030-105-R 890 MHz to 915 MHz Band, 0.41 dB loss, N(m) to SMA(f), 50 Ω 1030-111-R 1850 MHz to 1910 MHz, N(m) to SMA (f), 50 Ω 1030-106-R 1710 MHz to 1790 MHz Band, 0.34 dB loss, N(m) to SMA(f), 50 Ω 1030-107-R 1910 MHz to 1990 MHz Band, 0.41 dB loss, N(m) to SMA(f), 50 Ω 1030-112-R 2400 MHz to 2484 MHz, N(m) to SMA (f), 50 Ω 1030-149-R High Pass, 150 MHz, N(m) to N(f), 50 Ω 1030-151-R High Pass, 400 MHz, N(m) to N(f), 50 Ω 1030-152-R Low Pass, 200 MHz, N(m) to N(f), 50 Ω 1030-153-R Low Pass, 550 MHz, N(m) to N(f), 50 Ω 1030-155-R 2500 MHz to 2700 MHz, N(m) to N(f), 50 Ω

Attenuators

Part Number Description

3-1010-122	20 dB, 5 W, DC to 12.4 GHz, N(m) to N(f)
42N50-20	20 dB, 5 W, DC to 18 GHz, N(m) to N(f)
42N50A-30	30 dB, 50 W, DC to 18 GHz, N(m) to N(f)
3-1010-123	30 dB, 50 W, DC to 8.5 GHz, N(m) to N(f)
1010-127-R	30 dB, 150 W, DC to 3 GHz, N(m) to N(f)
3-1010-124	40 dB, 100 W, DC to 8.5 GHz, N(m) to N(f), Uni-directional
1010-121	40 dB, 100 W, DC to 18 GHz, N(m) to N(f), Uni-directional
1010-128-R	40 dB, 150 W, DC to 3 GHz, N(m) to N(f)

Miscellaneous Accessories – (Continued)

Phase-Stable Test Port Cables, Armored

Part Number Description 15N43M50-1.5C Test Port Extension Cable, Armored, 1.5 meters, DC to 6 GHz, N(m) to 4.3-10(m) 15N43F50-1.5C Test Port Extension Cable, Armored, 1.5 meter, DC to 6 GHz, N(m) to 4.3-10(f) 15N43M50-3.0C Test Port Extension Cable, Armored, 3 meters, DC to 6 GHz, N(m) to 4.3-10(m) 15N43F50-3.0C Test Port Extension Cable, Armored, 3 meters, DC to 6 GHz, N(m) to 4.3-10(f) 15NF43M50-1.5C Test Port Extension Cable, Armored, 1.5 meters, DC to 6 GHz, N(f) to 4.3-10(m) 15NF43F50-1.5C Test Port Extension Cable, Armored, 1.5 meters, DC to 6 GHz, N(f) to 4.3-10(f) 15NF43M50-3.0C Test Port Extension Cable, Armored, 3 meters, DC to 6 GHz, N(f) to 4.3-10(m) 15NF43F50-3.0C Test Port Extension Cable, Armored, 3 meters, DC to 6 GHz, N(f) to 4.3-10(f) 15NNF50-1.5C 1.5 m, DC to 6 GHz, N(m) to N(f), 50 Ω 15NN50-1.5C 1.5 m, DC to 6 GHz, N(m) to N(m), 50 Ω 15NDF50-1.5C 1.5 m, DC to 6 GHz, N(m) to 7/16 DIN(f), 50 Ω 15ND50-1.5C 1.5 m, DC to 6 GHz, N(m) to 7/16 DIN(m), 50 Ω 15NNF50-3.0C 3.0 m, DC to 6 GHz, N(m) to N(f), 50 Ω 15NN50-3.0C $\,$ 3.0 m, DC to 6 GHz, N(m) to N(m), 50 Ω 15NNF50-5.0C 5.0 m, DC to 6 GHz, N(m) to N(f), 50 Ω 15NN50-5.0C $\,$ 5.0 m, DC to 6 GHz, N(m) to N(m), 50 Ω

InterChangeable Adaptor Phase Stable Test Port Cables, Armored w/Reinforced Grip (Recommended for cable and antenna line sweep applications. It uses the same ruggedized grip as the Reinforced Grip series cables. Now you can also change the adapter interface on the grip to four different connector types.)

Part Number Description

15RCN50-1.5-R 1.5 m, DC to 6 GHz, N(m), N(f), 7/16 DIN(m), 7/16 DIN(f), 50 Ω 15RCN50-3.0-R 3.0 m, DC to 6 GHz, N(m), N(f), 7/16 DIN(m), 7/16 DIN(f), 50Ω

Directional Antennas

Part Number Description Portable Directional Antenna, 9 kHz to 20 MHz, N(f)

2000-1777-R

2000-1778-R Portable Directional Antenna, 20 MHz to 200 MHz, N(f) 2000-1779-R Portable Directional Antenna, 200 MHz to 500 MHz, N(f) 2000-1812-R Portable Yagi Antenna, 450 MHz to 512 MHz, N(f), 7.1 dBi 2000-1825-R Portable Yagi Antenna, 380 MHz to 430 MHz, N(f), 7.1 dBi 2000-1659-R 698 MHz to 787 MHz, N(f), 10.1 dBi, Yaqi 2000-1411-R 824 MHz to 896 MHz, N(f), 12.3 dBi, Yagi 2000-1412-R 885 MHz to 975 MHz, N(f), 12.6 dBi, Yagi 2000-1660-R 1425 MHz to 1535 MHz, N(f), 14.3 dBi, Yagi 2000-1413-R 1710 MHz to 1880 MHz, N(f), 12.3 dBi, Yagi 2000-1414-R 1850 MHz to 1990 MHz, N(f), 11.4 dBi, Yagi 2000-1416-R 1920 MHz to 2170 MHz, N(f), 14.3 dBi, Yagi 2000-1415-R 2400 MHz to 2500 MHz, N(f), 14.1 dBi, Yagi 2000-1726-R Antenna, 2500 MHz to 2700 MHz, N(f), 14.1 dBi, Yagi 2000-1715-R Directional Antenna, 698 MHz to 2500 MHz, N(f), gain of 2 dBi to 10 dBi, typical 2000-1747-R Antenna, Log Periodic, 300 MHz to 7000 MHz, N(f), 5.1 dBi, typical 2000-1748-R Antenna, Log Periodic, 1 GHz to 18 GHz, N(f), 6 dBi, typical

Isotropic Antennas

Part Number Description

2000-1791-R Isotropic Antenna, 700 MHz to 6000 MHz, N(m) 2000-1792-R Isotropic Antenna, 30 MHz to 3000 MHz, N(m) 2000-1800-R Isotropic Antenna, 9 kHz to 300 MHz, N(m)

S412E TDS PN: 11410-00486 Rev. AD 35 of 37

Miscellaneous Accessories - (Continued)

Portable Antennas

Part Number	Description
2000-1200-R	806 MHz to 866 MHz, SMA(m), 50 Ω^*
2000-1473-R	870 MHz to 960 MHz, SMA(m), 50 Ω^*
2000-1035-R	896 MHz to 941 MHz, SMA(m), 50 Ω (1/2 wave)*
2000-1030-R	1710 MHz to 1880 MHz, SMA(m), 50 Ω (1/2 wave)*
2000-1474-R	1710 MHz to 1880 MHz with knuckle elbow (1/2 wave)*
2000-1031-R	1850 MHz to 1990 MHz, SMA(m), 50 Ω (1/2 wave)*
2000-1475-R	1920 MHz to 1980 MHz and 2110 MHz to 2170 MHz, SMA(m), 50 Ω^{\star}
2000-1032-R	2400 MHz to 2500 MHz, SMA(m), 50 Ω (1/2 wave)*
2000-1361-R	2400 MHz to 2500 MHz, 5000 MHz to 6000 MHz, SMA(m), 50 Ω^*
2000-1636-R	Antenna Kit (Consists of: 2000-1030-R, 2000-1031-R, 2000-1032-R, 2000-1200-R, 2000-1035-R, 2000-1361-R, and carrying pouch)
2000-1616	20 MHz to 21000 MHz, N(f), 50 Ω
2000-1487	Telescoping Whip Antenna, BNC **
	* Requires 1091-27-R SMA(f) to N(m) adapter ** Requires 1091-172-R BNC(f) to N(m) adapter

GPS Antennas (active)

Part Number Description

 2000-1652-R
 Magnet Mount, SMA(m), 3 VDC to 5 VDC with 1 ft cable

 2000-1528-R
 Magnet Mount, SMA(m), 3 VDC to 5 VDC with 4.6 m (15 ft) extension cable

 2000-1760-R
 Mini GPS Antenna, SMA(m), 25 dB gain, 2.5 VDC to 3.7 VDC

Mag Mount Broadband Antenna

Part Number	Description
2000-1616-R	20 MHz to 21000 MHz, N(f), 50 Ω
2000-1645-R	694 MHz to 894 MHz 3 dBi peak gain, 1700 MHz to 2700 MHz 3 dBi peak
	gain, N(m), 50 Ω, 10 ft
2000-1646-R	750 MHz to 1250 MHz 3 dBi peak gain, 1650 MHz to 2000 MHz 5 dBi peak

gain, 2100 MHz to 2700 MHz 3 dBi peak gain, N(m), 50 Ω , 10 ft 2000-1647-R Cable 1: 698 MHz to 1200 MHz 2 dBi peak gain, 1700 MHz to 2700 MHz 5 dBi peak gain, N(m), 50 Ω , 10 ft

Cable 2: 3000 MHz to 6000 MHz 5 dBi peak gain, N(m), 50 Ω , 10 ft Cable 3: GPS 26 dB gain, SMA(m), 50 Ω , 10 ft

2000-1946-R Cable 1: 617 MHz to 960 MHz 3 dBi peak gain, 1710 MHz to 3700 MHz 4 dBi peak gain, N(m), 50 Ω , 10 ft Cable 2: 3000 MHz to 6000 MHz 5 dBi peak gain, N(m), 50 Ω , 10 ft Cable 3: GPS 26 dB gain, SMA(m), 50 Ω , 10 ft

2000-1648-R $\,$ 1700 MHz to 6000 MHz 3 dBi peak gain, N(m), 50 Ω , 10 ft

32	

• United States Anritsu Company

450 Century Parkway, Suite 190, Allen, TX 75013 U.S.A. Toll Free: +1-800-267-4878 Phone: +1-972-644-1777

• Canada

Anritsu Electronics Ltd.

700 Silver Seven Road, Suite 120, Kanata, Ontario K2V 1C3, Canada Phone: +1-613-591-2003 Fax: +1-613-591-1006

Brazil

Anritsu Electrônica Ltda.

Praça Amadeu Amaral, 27 - 1 Andar 01327-010 - Bela Vista - Sao Paulo - SP - Brazil Phone: +55-11-3283-2511 Fax: +55-11-3288-6940

Mexico

Anritsu Company, S.A. de C.V.

Blvd Miguel de Cervantes Saavedra #169 Piso 1, Col. Granada Mexico, Ciudad de Mexico, 11520, MEXICO Phone: +52-55-4169-7104

• United Kingdom Anritsu EMEA Ltd.

200 Capability Green, Luton, Bedfordshire LU1 3LU, U.K. Phone: +44-1582-433280
Fax: +44-1582-731303

• France

Anritsu S.A.

12 avenue du Québec, Batiment Iris 1-Silic 612, 91140 Villebon-sur-Yvette, France Phone: +33-1-60-92-15-50 Fax: +33-1-64-46-10-65

• Germany Anritsu GmbH

Nemetschek Haus, Konrad-Zuse-Platz 1 81829 München, Germany Phone: +49-89-442308-0 Fax: +49-89-442308-55

• Italy

Anritsu S.r.l.

Via Elio Vittorini 129, 00144 Roma Italy Phone: +39-06-509-9711 Fax: +39-06-502-2425

Sweden

Anritsu AB

Isafjordsgatan 32C, 164 40 KISTA, Sweden Phone: +46-8-534-707-00

• Finland

Anritsu AB

Teknobulevardi 3-5, FI-01530 VANTAA, Finland Phone: +358-20-741-8100 Fax: +358-20-741-8111

Denmark

Anritsu A/S

Kay Fiskers Plads 9, 2300 Copenhagen S, Denmark Phone: +45-7211-2200 Fax: +45-7211-2210

• Russia

Anritsu EMEA Ltd.

Representation Office in Russia

Tverskaya str. 16/2, bld. 1, 7th floor. Moscow, 125009, Russia Phone: +7-495-363-1694 Fax: +7-495-935-8962

• Spain

Anritsu EMEA Ltd.

Representation Office in Spain

Edificio Cuzco IV, Po. de la Castellana, 141, Pta. 5 28046, Madrid, Spain Phone: +34-915-726-761 Fax: +34-915-726-621

• United Arab Emirates Anritsu EMEA Ltd.

Dubai Liaison Office

P O Box 500413 - Dubai Internet City Al Thuraya Building, Tower 1, Suite 701, 7th floor Dubai, United Arab Emirates Phone: +971-4-3688460 Fax: +971-4-3688460

• India

Anritsu India Pvt Ltd.

6th Floor, Indiqube ETA, No.38/4, Adjacent to EMC2, Doddanekundi, Outer Ring Road, Bengaluru – 560048, India

Phone: +91-80-4058-1300 Fax: +91-80-4058-1301

Singapore

Anritsu Pte. Ltd.

11 Chang Charn Road, #04-01, Shriro House Singapore 159640 Phone: +65-6282-2400 Fax: +65-6282-2533

• P. R. China (Shanghai) Anritsu (China) Co., Ltd.

27th Floor, Tower A, New Caohejing International Business Center No. 391 Gui Ping Road Shanghai, Xu Hui Di District, Shanghai 200233, P.R. China Phone: +86-21-6237-0898 Fax: +86-21-6237-0899

• P. R. China (Hong Kong) Anritsu Company Ltd.

Unit 1006-7, 10/F., Greenfield Tower, Concordia Plaza, No. 1 Science Museum Road, Tsim Sha Tsui East, Kowloon, Hong Kong, P. R. China Phone: +852-2301-4980 Fax: +852-2301-3545

• Japan

Anritsu Corporation

8-5, Tamura-cho, Atsugi-shi, Kanagawa, 243-0016 Japan Phone: +81-46-296-6509 Fax: +81-46-225-8352

• Korea

Anritsu Corporation, Ltd.

5FL, 235 Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13494 Korea Phone: +82-31-696-7750 Fax: +82-31-696-7751

• Australia

Anritsu Pty Ltd.

Unit 20, 21-35 Ricketts Road, Mount Waverley, Victoria 3149, Australia Phone: +61-3-9558-8177 Fax: +61-3-9558-8255

• Taiwan

Anritsu Company Inc.

7F, No. 316, Sec. 1, Neihu Rd., Taipei 114, Taiwan Phone: +886-2-8751-1816 Fax: +886-2-8751-1817

Anritsu utilizes recycled paper and environmentally conscious inks and toner.

